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ABSTRACT
Plate-tectonic processes have long been thought to be the major cause of the Cenozoic 

global carbon cycle, and global cooling by uplift of the Tibetan Plateau through enhancing 
silicate weathering and organic carbon burial and/or by weathering of obducted ophiolites 
during the closure of the Neo-Tethys Ocean. However, the imbalance resulting from accel-
erated CO2 consumption and a relatively stable CO2 input from volcanic degassing during 
the Cenozoic should have depleted atmospheric CO2 within a few million years; therefore, 
a negative feedback mechanism must have stabilized the carbon cycle. Here, we present the 
first almost-complete Paleogene silicate weathering intensity (SWI) records from continental 
rocks in the northern Tibetan Plateau showing that silicate weathering in this tectonically 
inactive area was modulated by global temperature. These findings suggest that Paleogene 
global cooling was also strongly influenced by a temperature feedback mechanism, which 
regulated silicate weathering rates and hydrological cycles and maintained a nearly stable 
carbon cycle. It acted as a negative feedback by decreasing CO2 consumption resulting from 
the lower SWI and the kinetic limitations in tectonically inactive areas.

INTRODUCTION
Postulation about the links between silicate 

weathering and the long-term global carbon 
cycle has led to an extended debate regarding 
the role of plate-tectonic processes, including 
closure of the Tethys Ocean and tectonic up-
lift of the Tibetan Plateau (TP), in the global 
carbonate-silicate geochemical cycle via the ac-
celerated weathering of silicate rocks (Raymo 
and Ruddiman, 1992; France-Lanord and Derry, 
1997; Kump et al., 2000; Galy et al., 2015; Ja-
goutz et al., 2016). Numerous studies have at-
tributed the remarkable increase in Cenozoic 
seawater Sr, Li, and Os isotopes to the weather-
ing of uplifted continental rocks (Edmond, 1992; 
Klemm et al., 2005; Misra and Froelich, 2012) 
or obducted ophiolites (Jagoutz et al., 2016) 
in the Intertropical Convergence Zone. There-
fore, such enhanced weathering of the continent 
should have induced a rapid depletion of atmo-
spheric CO2, and requires negative feedbacks to 

have stabilized atmospheric CO2 levels (Berner 
and Caldeira, 1997). Various negative feedback 
hypotheses have been proposed; e.g., organic 
carbon cycle (Raymo and Ruddiman, 1992), 
metamorphic decarbonation (Bickle, 1996), sul-
fur cycle (Torres et al., 2014), and temperature 
(T)-dependent weathering (Kump and Arthur, 
1997) hypotheses. In the latter case, the nega-
tive feedback is thought to occur in areas under 
“weathering-limited regimes” characterized 
by silicate weathering rates that are controlled 
by kinetic (climatic) parameters (Kump et al., 
2000; West et al., 2005), such as island basalt 
(Li and Elderfield, 2013; Li et al., 2016), conti-
nental arcs (Lee et al., 2015), and seafloor basalt 
(Coogan and Dosso, 2015), or by a weatherabil-
ity-climate linkage (Kump and Arthur, 1997; 
Caves et al., 2016; Zhang and Planavsky, 2019). 
These hypotheses of T-dependent weathering, 
and other hypotheses, are difficult to test directly 
by studying the geological archives at a global 

scale (the marine record) because other parts of 
the world were subjected to weathering that was 
insensitive to T, described as “transport-limited 
regimes,” where silicate weathering rates scaled 
directly with erosion (Kump et al., 2000; West 
et al., 2005).

Instead of building a global record, we used 
an alternative approach to document the changes 
in the continental silicate weathering flux. Our 
hypothesis is that the world beyond the uplifted 
TP is, on average, globally characterized by sta-
ble long-term erosion rates. In that case, the rap-
id carbon consumption produced by enhanced 
silicate weathering and faster burial of organic 
carbon in South and East Asia, where tectonic 
uplift promotes monsoon development, is nearly 
balanced by the tight link between a lower sili-
cate weathering intensity (SWI) and global cool-
ing. Thus, the issue of whether the SWI of con-
tinental rocks in non–Asian-monsoon regions is 
closely linked to kinetic parameters, e.g., pCO2 
and temperature, will be a crucial test of our 
working hypothesis.

During the Paleogene, the northern TP was 
a tectonically inactive area, and the Asian sum-
mer monsoon did not reach this region until the 
beginning of the Neogene (Fig. 1; Guo et al., 
2008). The major tectonic uplift of that area oc-
curred in the late Neogene (Tapponnier et al., 
2001; Li et al., 2014). Here, we present the first 
record in this region showing a decrease in the 
SWI generally coupled with the global tempera-
ture during the Paleogene.

MATERIAL AND METHODS
Clay mineral records of SWI were retrieved 

from the Hongliugou (HLG) section in the 
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Qaidam Basin and from the Xiejia (XJ) section 
in the Xining Basin. Both basins are large in-
termontane basins on the northern TP (Fig. 1). 
In these basins, detailed magnetostratigraphy 
and biostratigraphy (Dai et al., 2006; Zhang, 
2007) have determined the onset of sedimenta-
tion at ca. 54–52 Ma (Fig. 2). The Paleogene 
strata of the HLG section are dominated in the 
lower part by red sandstones intercalated with 
thin mudstone layers representing alluvial-fan 
deposits, fining-upward to red-brown siltstones-
mudstones embedded with green sandstones, 
which are interpreted as lacustrine deposits 
(Fig. 2; Zhang, 2007). The Paleogene strata of 
the XJ section are dominated by homogeneous 
red siltstones-mudstones intercalated with gyp-
sum layers representing alternations of distal 
floodplain dry mudflat and saline lake environ-
ments (Fig. 2; Dupont-Nivet et al., 2007). The 
clay fractions were separated following Stokes’ 
law and analyzed by X-ray diffraction. Aliquots 
of the clay-sized samples were digested with 
HNO3/HF, and trace-element concentrations 
were measured by inductively coupled plasma–
mass spectrometry. The hematite contents of 
bulk samples were identified by the heights of 
peaks at 565 nm for the first derivatives calcu-
lated from diffuse reflectance data (Deaton and 
Balsam, 1991).

CLAY MINERALS AS SILICATE 
WEATHERING PROXIES

Clay minerals in both basins are mainly 
composed of abundant illite/smectite mixed 
layers (I/S) and illite, with smectite, kaolinite, 
and chlorite as minor components and the oc-
casional palygorskite (Fig. DR1 in the GSA 
Data Repository1). Clay mineral formation is 
linked to continental crust weathering processes 
characterized by the disappearance of primary 
silicate minerals with a loss of base ions and 
concomitant formation of clay minerals (Nesbitt 
and Young, 1982). Clay minerals in both basins 
are assumed to be the residual products of incon-
gruent silicate weathering in drainage areas, and 
their long-term variations are weakly impacted 
by postdeposition diagenesis and recycled clays 
(see Figs. DR2–DR5 and Data Repository text). 
However, the protolith can have an impact on 
the mineralogy of clays produced by weather-
ing. The immobile elements La and Th are more 
abundant in felsic rocks than in mafic rocks, and 
the opposite is true for Sc. Therefore, the Th/Sc 
ratio is a useful indicator of the provenance of 
felsic/mafic rock contributions (Taylor and 
McLennan, 1985; Cullers et al., 1988), while 

1GSA Data Repository item 2019356, XRD data 
and details of the clay mineral and trace elements anal-
yses, and test for temperature dependence of chemical 
weathering rate, is available online at http://www.geo-
society.org/datarepository/2019/, or on request from 
editing@geosociety.org.
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C

Figure 1.  (A,B) Map of the northern Tibetan Plateau showing studied locations: Hongliugou 
(HLG) section in the Qaidam Basin, and Xiejia (XJ) section in the Xining Basin. (C) Climate 
zones during the Eocene of China (Guo et al., 2008).

Figure 2.  Lithology and magnetostratigraphy of Paleogene sediments in the Hongliugou (HLG) 
section in the Qaidam Basin, and the Xiejia (XJ) section in the Xining Basin, on the Tibetan 
Plateau. (A–D) Representative photos, lithofacies, stratigraphy, observed virtual geomagnetic 
pole (VGP) latitudes (lat.), and polarity zones of the HLG section (Zhang, 2007). Fm—Forma-
tion. (E) Reference geomagnetic polarity time scale (GPTS2012; Gradstein and Ogg, 2012). 
(F–I) Observed polarity zones and VGPs, stratigraphy, and representative photos of lithofa-
cies of the XJ section).
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La/Th should yield a relatively stable value in 
fine-grained sediments (McLennan et al., 1980). 
Felsic and mafic rocks are present in the catch-
ments of both basins (Bureau of Geology and 
Mineral Resources of Qinghai Province, 1989). 
However, La/Th and Th/Sc in the clay fractions 
of both sections show very limited variability 
(Fig. 3; Figs. DR2 and DR3), indicating that the 
source rock was well mixed by riverine transport 
prior to deposition, and suggesting a negligible 
provenance control.

Overall, the clay mineralogy in both sec-
tions is likely to represent an invaluable archive 
to record the past catchment SWI. Chlorite and 
illite are predominant under cold and/or arid en-
vironments, whereas smectite, I/S, and kaolinite 
reflect a greater SWI under temperate-humid cli-
mates (e.g., Chamley, 1989). In both sections, the 
kaolinite content is generally <10% (Figs. DR2 
and DR3), except in a short interval of the early 
Eocene in the HLG section, where the kaolinite 
content can reach ∼20%. Such a low kaolinite 
content cannot be used as an index for weather-
ing intensity. I/S is mostly a transitional product 
(Weaver, 1989), and since smectite, I/S, and illite 
make up ∼80% of the clays, the (smectite + I/S)/
illite ratio is the best candidate to trace the SWI 
at the scale of the drainage basins.

PALEOGENE SILICATE WEATHERING 
INTENSITY ON THE NORTHERN 
TIBETAN PLATEAU

The long-term decrease in the (smec-
tite + I/S)/illite ratio in both sections (Fig. 3; 

Figs.  DR2 and DR3) indicates a long-term 
weakening of the SWI since the early Eocene, 
although its absolute values are higher in the 
Qaidam Basin than in the Xining Basin. The 
northeastern TP was in the paleo-Asian interior 
and outside the area influenced by the paleo-
Asian monsoon (Guo et al., 2008; Caves et al., 
2015). The different absolute values between the 
two basins might have been caused primarily 
by a shorter distance from the Qaidam Basin to 
the westward moisture source, the Para-Tethys 
Sea (see Fig. 1). The long-term trend (Fig. 3) 
displays a close temporality between the relative 
changes in the (smectite + I/S)/illite ratio from 
both basins and early Cenozoic global cooling 
(Zachos et al., 2008) and pCO2 drop (Pagani 
et al., 2005; Pearson et al., 2009; Anagnostou 
et al., 2016). This result suggests that global 
temperature may have been the first-order factor 
modulating the SWI. The remarkable decreases 
in the (smectite + I/S)/illite ratio at ca. 42 Ma 
might be a response to the ephemeral Antarctic 
glaciation, probably linked to the initial opening 
of the Drake Passage at ca. 41 Ma (Scher and 
Martin, 2006), and associated global cooling. 
The decrease in the SWI in this study can be 
related to the enhanced drying found in other 
sparse and low-resolution paleoclimatic records 
in the Xining Basin (Bosboom et al., 2014) and 
in the Qaidam Basin (Wang et al., 1999). The 
Eocene retreat of the Para-Tethys Sea (Sun and 
Jiang, 2013; Bosboom et al., 2014) may have 
also exerted some influence on climate by re-
ducing the hydrological cycle in the northern 

TP, and thus weakening chemical weathering. 
However, the retreat of the Para-Tethys Sea oc-
curred over the Eocene, not as an abrupt event 
at ca. 42 Ma. Thus, its influence would be both 
long-term and gradual. Local tectonic and differ-
ential uplifts are likely to be responsible for the 
increased sedimentation in the Xining Basin that 
occurred coeval with the lower sedimentation 
rate in the Qaidam Basin between 37 and 34 Ma 
(Fig. 3). The similar trend in the (smectite + I/S)/
illite ratios of the two basins during that period 
further highlights the lack of correlation be-
tween the SWI and tectonic forcing in the area. 
The gradual decrease in the (smectite + I/S)/il-
lite ratio in both sections ca. 35–33 Ma might 
have been a response to the global cooling as-
sociated with the onset of the permanent Ant-
arctic ice sheet at the Eocene-Oligocene transi-
tion (EOT). Although the magnitude of the EOT 
event in our records is smaller than those of the 
middle Eocene climatic optimum (MECO) and 
early Eocene climate optimum (EECO) events 
(Fig. 3), its magnitude is clear in the Xining 
Basin in high-resolution records (Zhang and 
Guo, 2014).

Hematite is a type of iron oxide formed dur-
ing soil weathering, and its relative content can 
serve as a SWI proxy (e.g., Clift et al., 2008). 
The hematite content in the HLG section ex-
hibits a long-term decrease (Fig. 3; Fig. DR2) 
similar to the variations in the (smectite + I/S)/
illite ratio. The long-term decrease in the hema-
tite content also displays large fluctuations and 
provides a good match to the global tempera-
ture record, particularly post-MECO and at the 
Eocene-Oligocene boundary (Fig. 3). Together 
with temperature, precipitation is another key 
climate factor affecting chemical weathering 
(West et al., 2005; Maher and Chamberlain, 
2014). High regional moisture levels likely oc-
curred on the Para-Tethys Sea to the west of the 
studied regions (Fig. 1) during the Paleogene 
(Bosboom et al., 2014). Higher temperatures 
cause greater evaporation of the sea and pro-
duce higher moisture levels. Given the results of 
climate modeling of the area during the Paleo-
gene (Ramstein et al., 1997), this moisture could 
have been transported to the studied regions by 
the westerlies, promoting rain and facilitating 
chemical weathering. Since this mechanism 
keeps pace with temperature, its effect has been 
encapsulated in the temperature-driven weath-
ering record.

IMPLICATIONS FOR GLOBAL 
WEATHERING FEEDBACK

Global temperature seems to be the most 
likely candidate to explain the decrease in the 
SWI in the TP two basins. This might also be 
true in other parts of the world (beyond the im-
pact of the Asian monsoon) where tectonic uplift 
was also weak during the Cenozoic. Consider-
ing an overall stable erosion rate in tectonically 
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Figure 3.  Mineralogy and sedimentation rate of Paleogene sediments in the Hongliugou (HLG) 
and Xiejia (XJ) sections in the Qaidam and Xining Basins, respectively, on the Tibetan Plateau. 
(A) Sedimentation rates. (B) Th/Sc ratios. (C–E) (Smectite + I/S)/illite ratios (I/S—illite/smectite 
mixed layers) and hematite content, with gray curve representing ∼1 m.y. running averages 
(3-point average for C, 11-point average for D and E). Use of two different running point averages 
accounted for different sampling density. (F) Global marine benthic δ18O record (‰, a proxy 
for global temperature assuming little ice volume in the Eocene; Zachos et al., 2008). EOT—
Eocene-Oligocene transition; MECO—middle Eocene climatic optimum; EECO—early Eocene 
climate optimum. (G) Atmospheric pCO2, where blue diamonds indicate marine phytoplank-
tonic δ13C (Pagani et al., 2005), and blue crosses correspond to planktonic foraminiferal δ11B 
(Pearson et al., 2009; Anagnostou et al., 2016). (H) Seafloor spreading rate (Muller et al., 2008).
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inactive regions, the silicate weathering flux can 
roughly be regarded as proportional to the SWI. 
Thus, the correlation of SWI with global temper-
ature (Fig. 3) suggests that global cooling could 
be a first-order control on the silicate weathering 
flux in regions beyond the impact of the Indo-
Asian collision and associated development of 
the Asian monsoon.

Our study indeed illustrates two distinct car-
bon cycle patterns: one in a tectonically inactive 
world with less-pronounced orogenesis, giving 
rise to an overall stable and low global erosion 
flux, and the other in an orogenic world with 
remarkably high erosion flux derived from a 
combination of active orogenesis and mountain-
induced heavy monsoon precipitation and gla-
cier processes (e.g., the Himalayas; Fig. 4). In 
the tectonically inactive world, any imbalance 
in the carbon cycle from CO2 degassing would 
ultimately be balanced by changes in the SWI, 
given an overall stable erosion flux (Fig. 4A). 
In contrast, in an orogenic world, any increase 
in erosion from the tectonically active region 
would lead to an overall increase in carbon se-
questration (caused by extremely high erosion 
flux–induced increases in silicate weathering 

flux and organic carbon burial). However, the 
increase in CO2 uptake in orogenic belts would 
be almost completely offset by the decrease 
in CO2 uptake flux in tectonically inactive re-
gions through decreases in global temperature 
and the associated lowering of the hydrological 
cycle. So, enhanced CO2 consumption in tec-
tonically active regions would be accommodated 
by lowered SWI across the rest of the world 
(Fig. 4B). Such a model is plausible since it is 
backed up by a first-order calculation of tem-
perature dependence on silicate weathering rate 
using the Arrhenius law: ln(kpost-uplift/kpre-uplift) = 
−Ea/R(1/Tpost-uplift − 1/Tpre-uplift, where k is silicate 
weathering rate; T is reaction temperature; R is 
a gas constant; and Ea is the activation energy; 
Figs. DR7 and DR8). When considering that 
global cooling can also induce a sluggish water 
cycle, the overall global cooling effect is more 
pronounced than that caused by the T sensitivity 
of silicate weathering alone (e.g., Kump et al., 
2000). Because the climate system and carbon 
cycle evolve in a quasi–steady state, the small 
imbalance that results from the enhanced ero-
sion in the tectonically active areas could drive 
down atmospheric pCO2. Recent studies also 

have debated that other plate-tectonic processes 
may act as important drivers of CO2 drawdown 
(Van der Meer et al., 2014; Jagoutz et al., 2016; 
Zhang and Planavsky, 2019). Although all of 
the proposed mechanisms have substantial un-
certainties regarding the evolution of the Paleo-
gene carbon cycle, our study suggests spatially 
variable negative feedback processes between 
atmospheric pCO2 and climate, linking plate 
tectonics and climate.
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