人才详细信息

姓名:梁尔源
性别:
学历:博士
专家类别:杰青/研究员
电话:010-8409 7069
传真:010-8409 7079
电子邮箱:liangey@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

个人简介 

梁尔源1973年生,中国科学院青藏高原研究所研究员,博士生导师,中国科学院高寒生态重点实验室主任,兰州大学兼职教授。长期从事青藏高原及其周边地区的树轮生态学与气候学研究,围绕森林垂直带、高山树线和灌木线结构与格局变化及其对气候变化的响应机制取得以下主要成果:(1)在变暖背景下,青藏高原树线位置倾向于向更高海拔爬升,但爬升速率受到种间关系的调控,强调了非气候因素对生态过程的影响;(2)喜马拉雅山南坡存在干旱胁迫导致的阔叶树种高山树线,揭示了树线上升速率受到春季降水的调控;(3)在高原面上系统开展了高山灌木年轮研究,发现降水而非低温是高原面上灌丛生态系统的主要限制因子,揭示了变暖引起的水分胁迫限制了高山灌木的更新。以第一或通讯作者在PNAS, Ecology, Global Change Biology, New Phytologist, Journal of Biogeography, Geophysical Research Letters, Climatic Change, Global and Planetary Change, Agricultural and Forest Meteorology, Forest Ecology and Management, Annals of Botany, Tree Physiology等期刊发表论文50余篇。 

教育背景: 

1992.9 1996.7 山东师范大学,获生物教育专业学士学位 

1996.92001.7中科院植物所,获植物学专业理学博士 

工作经历: 

2002.92004.7  中科院地理科学与资源研究所,博士后 

2004.8-2009.12 中国科学院青藏高原研究所,副研究员 

2010.1-  中国科学院青藏高原研究所,研究员  

1998.101999.1  荷兰莱登大学,标本馆,访问学者 

2001.112002.8法国农业环境工程研究中心,普罗旺斯地区艾克斯地中海森林与农业研究分部(Cemagref in Aix-en-Provence, France),博士后 

2004.10-2005.12; 2006.11-2007.04  德国汉堡大学,洪堡学者(Humboldt Research Fellowship 

2008.11-2009.3 德国汉堡大学,高访 

2015.1-2015.3 哈佛大学林学系,高访 

2017.8-2018.8,亚利桑那大学,访问学者 

研究方向

树轮生态学与气候学,高寒生态系统格局与过程

职务

社会任职

中国生态学学会高寒生态专业委员会主任(2019-) 

中国地理学会树轮分会(筹)副主任(2019- 

国际木材科学家学会(IAWA)常务理事(2018-2020 

北京生态学学会理事(2018-2021 

地理学会生物地理专业委员会委员(2018- 

中国自然资源学会山地资源研究专业委员会副主任委员(2017- 

中国环境科学学会环境地学分会副主任委员(2017- 

中国第四纪科学研究会历史时期气候变化专业委员会委员(2017-) 

国际木材科学家(IAWA)中国分会常务理事(2015-) 

中国植物学会古植物分会理事(2014- 

Tree-ring Research, 副主编(2020- 

 Geografiska Annaler: Series A, Physical Geography, 客座副主编(2019-2020. 

杂志编委: 

Journal of Mountain Science (2020-2024) 

 Tree Physiology (2020-2022) 

Journal of Plant Ecology (2020-2022) 

 IAWA Journal (2018-2020) 

 Global and Planetary Change (2017-) 

 Trees - Structure and Function (2013-) 

承担项目

1. 国家自然科学基金杰出青年基金,树轮生态学与气候学(2016-2020),主持

2. 国家自然科学基金国际合作基金项目,过去100年来喜马拉雅山东段海拔垂直带上森林结构与格局变化(2017-2019),主持

3. 国家自然科学基金面上项目,青藏高原高海拔区香柏灌木年轮网络的建立(2015-2018),主持

4. 科技部科技基础性工作专项课题,“青藏高原基础资料匮乏区科学考察”:植被多样性与植物群落调查(2012-2016),主持

5. 国家自然科学基金面上项目,青海都兰祁连圆柏分布海拔垂直带上的微环境和树木季节生长动态监测(2012-2015),主持

6. 中科院战略性先导专项子课题,过去百年气候增暖及成因:过去百年增暖对青藏高原高海拔生态交错带格局和树木生长的影响(2011-2015),主持

7. 科技部973计划专题,全球变化影响下我国陆地生态系统的脆弱性与适应性研究—亚高山针叶林的脆弱性评价指标(2010-2014),主持

8. 中科院重要方向性项目(青年人才类),藏东南色季拉山树线波动与气候变化(2010-2012),主持

9. 国家自然科学基金面上项目,藏东南色齐拉山过去400年来的树轮气候记录(2009-2011),主持

10. 国家自然科学基金面上项目,藏东南色齐拉山林线树木形成层活动对气候变化的指示(2007-2009),主持

11. International Foundation for Science, Dendroecological investigation of relict Chinese pine on sandy land in east Inner Mongolia: implication for afforestation and ecosystem restoration (2004-2006), 主持

12. 国家自然科学基金青年科学基金项目,青藏高原东北部祁连圆柏的生长对环境响应的空间分析(2004-2006),主持

获奖及荣誉

2019:中国科学院优秀导师奖

2018:国家“万人计划”科技创新领军人才

2016:“国家创新人才推进计划”中青年科技创新领军人才

2016:中国科学院青年创新促进会优秀会员

2015:国家杰出青年基金

2012:中国科学院青年创新促进会会员

2012:马塔切纳青年优秀论文奖

2010:教育部自然科学二等奖(排名第二)

2009:中国科学院卢嘉锡青年人才奖

2004:德国洪堡基金会洪堡学者

代表论著

1. Sigdel SR, Liang E*, Wang Y, Dawadi B, Camarero JJ. 2020. Tree-to-tree interactions slow down Himalayan treeline shift as inferred from tree spatial patterns. Journal of Biogeography, DOI: 10.1111/JBI.13840  

2. Lu X, Huang R, Wang Y, Zhang B, Zhu H, Camarero JJ, Liang E*. 2020. Spring hydroclimate reconstruction on the south-central Tibetan Plateau inferred from Juniperus pingii var. wilsonii shrub rings since 1605. Geophysical Research Letters, 47, e2020GL087707  

3. Liang E*, Dawadi B, Pederson N, Piao S, Zhu H, Sigdel SR, Chen D. 2019. Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree-ring records. Science Bulletin, 64(14):1018–1023. 

4. Lu X, Liang E*, Wang Y, Babst F, Leavitt S, Camarero JJ. 2019. Past the climate optimum: Recruitment is declining at the world’s highest juniper shrublines on the Tibetan Plateau. Ecology, 100(2), e02557.  

5. Ren P, Ziaco E, Rossi S, Biondi F, Prislan P, Liang E*. 2019. Growth rate rather than growing season length determines wood biomass in dry environments. Agricultural and Forest Meteorology 271: 46-53. 

6. Wang Y, Sylvester SP, Lu XM, Dawadi B, Sigdel SR, Liang E*, Camarero JJ. 2019. The stability of spruce treelines on the eastern Tibetan Plateau over the last century is explained by pastoral disturbance. Forest Ecology and Management, 442: 34–45. 

7. Li X, Rossi S, Liang E*. 2019. The onset of xylogenesis in Smith fir is not related to outer bark thickness. American Journal of Botany. 106(10): 1386-1391. 

8. Sigdel SR, Wang Y, Camarero JJ, Zhu H, Liang E*, Penuelas J. 2018. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology, 24: 5549–5559 

9. Ren P, Rossi S, Camarero JJ, Ellison AM, Liang E*, Penuelas J. 2018. Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the northeastern Tibetan Plateau. Annals of Botany, 121 (4): 617–624.  

10. Liu S, Li X, Rossi S, Wang L, Li W, Liang E*, Leavitt SW. 2018. Differences in xylogenesis between dominant and suppressed trees. American Journal of Botany, 105(5): 950–956. 

11. Li X, Liang E*, Gricar J, Rossi S, Cufar K, Ellison AM. 2017. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau. Science Bulletin, 62(11):804–812. 

12. Liang E*, Wang Y, Piao S, Lu X, Camarero JJ, Zhu H, Zhu L, Ellison AM, Ciais P, Penuelas J. 2016. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences, USA, 113(16), 4380–4385  

13. Liang E*, Leuschner C, Dulamsuren C, Wagner B, Hauck M*. 2016. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Climatic Change, 134(1): 163-176. 

14. Liang E*, Balducci L , Ren P , Rossi S. 2016. Xylogenesis and Moisture Stress. In Kim YS, Funada R, Singh AP (eds), Secondary Xylem Biology : Origins, Functions, and Applications. Elsevier press, pp. 25-54. 

15. Li X, Camarero JJ, Bradley C, Liang E*, Rossi S. 2016. The onset of xylogenesis is not related to distance from the crown. Canadian Journal of Forest Research, 46(6): 885–889.  

16. Li X, Rossi S, Liang E*, Camarero JJ. 2016. Temperature thresholds for the onset of xylogenesis in alpine shrubs on the Tibetan Plateau. Trees, 30(6): 2091-2099  

17. Liang E*, Liu W, Ren P, Dawadi B, Eckstein D. 2015. The alpine dwarf shrub Cassiope fastigiata in the Himalayas: does it reflect site-specific climatic signals in its annual growth rings? Trees, 29(1): 79-86 

18. Lu X, Camarero JJ, Wang Y, Liang E*, Eckstein D. 2015. Up to 400-year old Rhododendron shrubs on the southeastern Tibetan Plateau: prospects for shrub-based dendrochronology. Boreas, 44 (4): 760-768.  

19. Wang Y, Liang E*, Ellison AM, Lu X, Camarero JJ. 2015. Facilitation stabilizes moisture-controlled alpine juniper shrublines in the central Tibetan Plateau. Global and Planetary Change, 132: 20-30.  

20. Ren P, Rossi S, Gricar J, Liang E*, Cufar K.  2015. Is precipitation a trigger of the onset of xylogenesis in Juniperus przewalskii on the northeastern Tibetan Plateau? Annals of Botany, 115: 629–639.  

21. Liang E*, Dawadi B, Pederson N, Eckstein D. 2014. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology, 95(9):  2453–2465 

22. Li X, Liang E*, Gricar J, Prislan P, Rossi S, Cufar K. 2013. Age-dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology, 33(1): 48–56.  

23. Dawadi B, Liang E*, Tian L, Devkota LP, Yao T. 2013. Pre-monsoon precipitation signal in tree rings of timberline Betula utilis in the central Himalayas. Quaternary International, 283: 72-77 

24. Wang Y, Li X, Dawadi B, Eckstein D, Liang E*. 2013. Phenological variation in height growth and needle unfolding of Smith fir along an altitudinal gradient on the southeastern Tibetan Plateau. Trees, 27 (2): 401-407  

25. Liang E*, Lu X, Ren P, Li X, Zhu L, Eckstein D. 2012. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy. Annals of Botany, 109(4): 721-728. 

26. Wang, Y, Camarero J. J., Luo T, Liang E*. 2012. Spatial patterns of Smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecology & Diversity, 5(3): 311-321. 

27. Liang E*, Wang Y, Eckstein D, Luo T. 2011. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytologist, 190(3): 760-769. 

28. Liang E*, Liu B, Zhu L, Yin Z-Y. 2011. A short note on linkage of climatic records between a river valley and the upper timberline in the Sygera Mountains, southeastern Tibetan Plateau. Global and Planetary Change, 77(1-2): 97-102. 

29. Liang E*, Wang Y, Xu Y, Liu B, Shao X. 2010. Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees - Structure and Function, 24(2): 363-373. 

30. Liang E*, Shao X, Eckstein D, Liu X. 2010. Spatial variability of tree growth along a latitudinal transect in the Qilian Mountains, northeastern Tibetan Plateau. Canadian Journal of Forest Research, 40(2): 200-211. 

31. Liang E*, Eckstein D. 2009. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau. Annals of Botany 104(4): 665-670. 

32. Liang E*, Eckstein D, Shao X. 2009. Seasonal cambial activity of relict Chinese pine at the northern limit of its natural distribution in Northern China: exploratory results. IAWA Journal, 30(4): 371–378. 

33. Liang E*, Eckstein D, Liu H. 2009. Assessing the recent grassland greening trend in a long-term context based on tree-ring analysis: A case study in North China. Ecological Indicators, 9(6): 1280-1283. 

34. Liang E*, Shao X, Xu Y. 2009. Tree-ring evidence of recent abnormal warming on the southeast Tibetan Plateau. Theoretical and Applied Climatology, 98(1-2): 9-18. 

35. Liang E*, Shao X, Liu X. 2009. Annual precipitation variation inferred from tree rings since A.D. 1770 for the western Qilian Mts., northern Tibetan Plateau. Tree-Ring Research, 65 (2): 95-103 

36. Liang E*, Shao X, Qin N. 2008. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau. Global and Planetary Change 61(3-4): 313-320. 

37. Liang E*, Eckstein D, Liu H. 2008. Climate-growth relationships of relict Pinus tabulaeformis at the northern limit of its natural distribution in northern China. Journal of Vegetation Science 19(3): 393-406. 

38. Liang E*, Shao X, Liu H, Eckstein D. 2007. Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag sand land, east Inner Mongolia. Chinese Science Bulletin 52(19): 2715-2721. 

39. Liang E, Eckstein D*. 2006. Light rings in Chinese pine (Pinus tabulaeformis) in semiarid areas of north China and their palaeo-climatological potential. New Phytologist, 171(4): 783-791. 

40. Liang E, Liu X, Yuan Y, Qin N, Fang X, Huang L, Zhu H, Wang L, Shao X*. 2006. The 1920s drought recorded by tree rings and historical documents in the semi-arid and arid areas of Northern China. Climatic Change, 79(3-4): 403-432. 

41. Liang E*, Shao X, Eckstein D, Huang L, Liu X. 2006. Topography- and species-dependent growth responses of Sabina przewalskiiand Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 236(2-3): 268-277. 

42. Liang E, Shao X*, He J. 2005. Relationships between tree growth and NDVI of grassland in the semi-arid grassland of north China. International Journal of Remote Sensing 26(13): 2901-2908. 

43. iang E*, Shao X, Kong Z Lin J. 2003. The extreme drought in the 1920s and its effect on tree growth deduced from tree ring analysis: a case study in North China. Annals of Forest Science, 60(2): 145-152. 

44. Liang E*, Vennetier M, Lin J, Shao X. 2003. Relationships between tree increment, climate and above-ground biomass of grass: a case study in the typical steppe, north China. Acta Oecologica, 24(2): 87-94 

45. Liang E, Shao X, Hu Y, Lin J*. 2001. Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland, north China. Trees - Structure and Function, 15(4): 230-235.