人才详细信息

姓名:苏凤阁
性别:
学历:博士
专家类别:研究员
电话:010-8409 7074
传真:010-8409 7079
电子邮箱:fgsu@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

11/2009 –至今: 研究员,中国科学院青藏高原研究所,北京 

4/2008 –10/2009: Research Scientist, University of Washington (华盛顿大学), SeattleUSA 

8/2007 – 3/2008: Research Scientist: USRA/MSFC/NASA(美国国家宇航局)Huntsville, USA 

1/2003 – 6/2007: 博士后, University of Washington (华盛顿大学), SeattleUSA 

1/2002– 12/2002: 博士后中国科学院大气物理研究所, 北京, 中国 

9/1998-12/2001:博士,专业: 水文水资源,南京河海大学 

9/1995-9/1998:硕士,专业: 水文水资源,新疆农业大学 

9/1991- 7/1995:学士,专业: 水利与土木工程,新疆农业大学 

研究方向

高山区降水和寒区水文过程 、多尺度陆面水文过程模拟 、第三极径流对气候变化的响应 

职务

社会任职

美国地球物理协会会员(AGU)

承担项目

1. 国家自然科学基金面上项目(41871057)“第三极典型冰雪补给流域径流对气候变化的响应研究”,2019-2022,主持

2. 中国科学院战略先导性科技专项(A) “泛第三极环境变化与绿色丝绸之路建设”子课题 “西风-季风区径流变化及其影响”(XDA20060202)“锡尔河出山口径流及其变化”专题负责人,2018-2022

3. 国家自然科学基金重大研究计划项目(91747201)“气候变化驱动下雅鲁藏布江冰川冻土植被协同变化及其径流效应”,2018-2021,主要参加人,负责 “雅鲁藏布江气候冰川变化与径流效应” 内容

4. 中国科学院国际合作局对外合作重点项目(131C11KYSB20160061),泛第三极环境与“一带一路”协同发展,2016-2021,已结题,参加

5. 中国科学院战略先导性科技专项(B) “现代高原的地表各圈层相互作用”,2012-2017,已结题,参加

6. 国家自然科学基金重点项目“第三极地区冰川物质-能量平衡与消融过程”,2012-2016,已结题,参加

7. 国家重点基础研究发展计划项目(“973”项目)全球变化专项“青藏高原气候系统变化及其对东亚区域的影响与机制研究”第二课题“青藏高原多圈层作用过程对气候变化的响应研究”,2010-2014,已结题,参加

8. 国家自然科学基金面上项目“青藏高原主要江河源区水文水资源对气候变化的响应研究”,2012-2015,已结题,主持

获奖及荣誉

代表论著

主要成果: 

1. 首次建立了高原尺度陆面冰川水文模型模拟框架,并量化了高原主要源区流域降雨、融雪和冰川径流对总径流的贡献,为后期高原水资源预测奠定了模型基础(JGR, 2013); 

2. 首次预估了高原未来100年气候的可能变化和高原主要江河源区水资源变化趋势,结果指出高原在21世纪末之前将不会出现供水短缺的问题(JC, 2013; GPC, 2016); 

3. 首次量化冰川融水和降水径流对青藏高原第一大和第二大湖泊色林错和纳木错湖泊水量扩张的贡献。指出,冰川融水在1979-2013对两湖总供水量的贡献小于13%,然而冰川融水对维持湖泊水位的增长起到重要作用(JGR, 2016; JHM, 2020); 

4. 基于GRACE和冰川水文模型,系统揭示了2003-2014年间青藏高原及典型流域陆地水储量(TWS)的变化特征及原因; 利用再分析数据和水汽追踪模型,完整刻画了高原内流区的水汽来源收支及其对内流区TWS, 湖泊,和降水变化的影响(JGR,2018; 2019). 

5. 首次基于地面降水和气温梯度观测,明晰了叶尔羌河上游高山区的降水量级和分布特征,填补了该冰川流域实际降水未知的空白,使该流域准确水文模拟和预测成为可能,同时为第三极其它流域高山区降水的反演提供参考 (JGR, 2018). 

6. 首次实现能量平衡冰川模块与分布式陆面水文模型VIC的耦合,并在流域尺度上完成了验证。对于第三极主要冰雪流域径流的研究,相对于以往的度日法,本研究从理论和实践上都前进了重要一步(JGR, 2019). 

代表论著: 

1. Tong, K., F. Su*, and C. Li (2020), Modeling of Water Fluxes and Budget in Nam Co Basin during 1979–2013, Journal of Hydrometeorology, 21(4), 829-844 

2. Li Y., F. Su*, D. Chen, and Q. Tang (2019). Atmospheric Water transport to the Endorheic Tibetan Plateau and its Effect on Hydrological Status in the Region. Journal of Geophysical Research, 124. https://doi.org/10.1029/2019JD031297 

3. Meng F., F. Su*, Y. Li, and K. Tong (2019). Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau. Journal of Geophysical Research. 124(6), 2909-2931.. https://doi.org/10.1029/2019JD031297 

4. Ren Z., F. Su*, B. Xu, Y. Xie, and B. Kan (2018). A coupled glacier–hydrology model and its application in eastern Pamir. Journal of Geophysical Research, 123(24), 13,692-13,713. 

5. Kan B., F. Su*, B. Xu, Y. Xie, J. Li, and H. Zhang (2018). Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the Upper Yarkant basin in the Karakoram. Journal of Geophysical Research, DOI: 10.1029/2017JD028055. 

6. Li C., F. Su*, D. Yang, K. Tong, F. Meng, and B. Kan (2018). Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014. International Journal of Climatology,38:708-728. 

7. Tong K., F. Su*, and B. Xu (2016). Quantifying the contribution of glacier-melt water in the expansion of the largest lake in Tibet. Journal of Geophysical Research, 121: 11158–11173 

8. Su F.*, L. Zhang, T. Ou, D. Chen, T. Yao, K. Tong, and Y. Qi (2016). Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau. Global and Planetary Change, 136: 82-95. 

9. Meng F., F. Su*, D. Yang, K. Tong, and Z. Hao (2016). Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. Journal of Hydrology: Regional Studies, 2016, 6: 66-81. 

10. Tong K., F. Su*, D. Yang, and Z. Hao (2014). Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. Journal of Hydrology, 519: 423-437 

11. Tong K., F. Su*, D. Yang, L. Zhang and Z. Hao (2014). Tibetan Plateau Precipitation as Depicted by Gauge Observations, Reanalyses and Satellite Retrievals. International Journal of Climatology, 2014, 34: 265-285 

12. Zhang L., F. Su*, D. Yang, Z. Hao and K. Tong (2013). Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. Journal of Geophysical Research, 2013, 118, DOI: 10.1002/jgrd.50665. 

13. Su F.*, X. Duan, D. Chen, Z. Hao and L. Cuo (2013). Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. Journal of Climate, 2013, 26: 3187-3208 

14. 孙赫, 苏凤阁*, 黄敬恒, 姚檀栋, 罗毅, Deliang Chen (2020). 第三极西风和季风主导流域源区降水呈现不同梯度特征. 科学通报, 65(91).  doi: 10.1360/TB-2019-0491 

其它论著: 

15. Su F.*, H. Gao, G. J. Huffman, D. P. Lettenmaier (2011). Potential utility of the real-time TMPA-RT precipitation estimates in Streamflow prediction. Journal of Hydrometeorology, 2011, 12(3), 444-455. 

16. Su F.*, D. P. Lettenmaier (2009). Estimation of surface water budget of La Plata Basin. Journal of Hydrometeorology, 10(4), 981-998. 

17. Su F.*, H. Yang, D. P. Lettenmaier (2008). Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata Basin. Journal of Hydrometeorology, 9(4), 622-640. 

18. Su F.*, J. C. Adam, K. E. Trenberth, D.P. Lettenmaier (2006). Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis. Journal of Geophysical Research, 11 

19. Su F.*, J. C. Adam, L. C. Bowling, D. P. Lettenmaier (2005). Streamflow simulations of the terrestrial Arctic domain. Journal of Geophysical Research, 2005, 110 

20. Tang Q., H. Gao, P. Yeh, T. Oki, F. Su, D. P. Lettenmaier (2010). Dynamics of Terrestrial Water Storage Change from Satellite and Surface Observations and Modeling. Journal of Hydrometeorology, 11(1), 156-170. 

21. Adam J. C., I. Haddeland, F. Su, D. P. Lettenmaier (2007). Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei and Ob' Rivers. Journal of Geophysical Research, 112, D24114, DOI:10.1029/2007JD008525. 

22. Cuo, L., Y. Zhang, Q. Wang, L. Zhang, B. Zhou, Z. Hao, F. Su (2013). Climate Change on the Northern Tibetan Plateau during 1957-2009: Spatial Patterns and Possible Mechanisms. Journal of Climate, 2013, 26(1): 85-109. 

23. Lettenmaier D. P and F. Su, Chapter 9: Progress in hydrological modeling over high latitudes under Arctic Climate System Study (ACSYS), In: Lemke, Pand H.-W.Jacobi (Eds.), Arctic Climate Change: The ACSYS Decade and Beyond, Atmospheric and Oceanographic Sciences Library 43, pp357-380, Springer Science+Business Media B.V. 2012. 

24. Demaria E. M. C., D. A. Rodriguez, E. E. Ebert, P. Salio, F. Su, J. B. Valdes. Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach. Journal of Geophysical Research, 2011, 116, D08103, DOI:10.1029/2010JD015157. 

25. Cuo, L., T. K. Beyene, N. Voisin, F. Su, D. P. Lettenmaier (2011), M., Alberti, J. E. Richey. Effects of mid-twenty-first century climate and land cover change on the hydrology of the Puget Sound basin, Washington. Hydrological Processes, 2011, 25(11): 1729-1753. 

26. Zhang Y., F. Su, Z. Hao, C. Xu, Z. Yu, L. Wang, and K. Tong (2015). Impact of projected climate change on the hydrology in the headwaters of the Yellow River Basin. Hydrological Processes, 29(20): 4379-4397 

27. 孙赫, 苏凤阁 (2020). 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用. 地理科学进展,DOI: 10.18306/dlkxjz.2020.00.000. 

28. 汤秋鸿, 兰措, 苏凤阁, 等 (2019). 青藏高原河川径流变化及其影响研究进展. 科学通报, doi: 10.1360/TB-2019-0141. 

29. 张人禾, 苏凤阁, 江志红, 高学杰, 郭东林, 倪健, 游庆龙, 兰措, 周波涛. 青藏高原21世纪气候和环境变化预估研究进展. 科学通报, 2015, 60(32): 3036-3047. 

30. 阚宝云, 苏凤阁, 童凯, 张磊磊. 四套降水资料在喀喇昆仑山叶尔羌河上游流域的适用性分析. 冰川冻土, 2013, 35(3): 710-722.