人才详细信息

姓名:马伟强
性别:
学历:博士
专家类别:研究员
电话:010-84097057
传真:010-8409 7079
电子邮箱:wqma@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

2014年8月至今:中国科学院青藏高原研究所
2013年9月-2014年8月,   日本东京大学,研究员(Researcher)。
2011年11月-2013年8月,  日本京都大学,研究员(Researcher)。
2010年8月-2011年10月,  澳大利亚查尔斯图大学,访问学者。
2004年7月-2010年8月,中国科学院寒区旱区环境与工程研究所,研实员,高级工程师。
2007年,博士,中国科学院大学,大气物理学与大气环境。
2004年,硕士,中国科学院大学,大气物理学与大气环境。
2001年,本科,兰州大学,大气科学系气象学。

主要研究成果:

20年来,马伟强长期坚守青藏高原气象学野外观测一线、通过资料分析、卫星遥感和数值模拟对高原大气边界层过程中的地表热通量进行了系统分析和过程模拟研究,积累了高原大气边界层过程影响大气环流详实的观测依据;同时主持了国家自然科学基金委青年、面上、重点项目和科技部重点研发项目专题,参与科技部青藏二次科考和中科院专项A等项目,深化了野外观测、遥感和模式分析的理解,这对揭示我国季风系统影响机理及全球天气气候过程方面有重大科学意义,同时也满足了更准确认识我国季风系统相关的国家需求,并取得了以下三个方面的创新性成果: 

1.在观测系统布局方面:为了弥补高原地气相互作用观测的短板与不足,以及满足目前对气候变化、卫星遥感和模式模拟等方面强烈的需求,本人参与设计并亲自赴高原建立了10多个大气边界层过程综合观测研究站,为地气相互作用的地表参数、卫星数据和数值模拟得到的地表热通量等提供真值验证,突破了以往卫星遥感和数值模高原地表热通量初始场缺乏和验证困难的瓶颈。也为天气和气候变化提供真实的观测依据。同时对现有台站数据进行了误差分析和订正; 

2.在观测研究方面:利用第一手的大气边界层过程的观测资料开展从日变化到年际变化的系统研究,揭示高原边界层过程中最具代表性的典型下垫面上的地表辐射和能量平衡的日变化和年际变化规律,明确了地表平衡各分量对大气环流的贡献;证实了季风期间高原地表以潜热为主,确定了高原地表感热和潜热的转换时间,为高原季风强弱和影响范围变化间接提供了证据; 

3.在卫星遥感应用和数值模拟研究方面:发展了卫星遥感参数化方案,利用卫星遥感升尺度由的区域地表热通量分布,结合数值模式模拟地表热通量的动态变化过程,揭示了高原感热和潜热区域分布特征,阐明了地表参数影响地表区域感热和潜热的机理。 

结合观测和遥感以及数值模拟来研究地表辐射收支以及地气相互作用规律,自2004以来共发表期刊论文共90多篇(均为大气科学和遥感科学主流杂志)。目前受邀JCJH等数十个国际期刊的审稿人。 

研究方向

大气边界层过程,卫星遥感应用,青藏高原陆-气相互作用模拟

职务

中国科学院珠穆朗玛大气与环境综合观测研究站站长,2019.3-

社会任职

西藏气象学会,副理事长,2020-

《应用生态学报》杂志编委,2020-

《Remote Sensing》杂志Topics Board Editor,2020-

《JALAWAAYU(水文气象)》杂志,编委,2019-

中国科学探险协会,理事,2019-

中国气象学会,会员,2004-

中国青藏高原研究会,会员,2015-

中国冰冻圈科学学会,会员,2018-

AGU (美国地球物理学会),会员,2014-

EGU (欧洲地球物理学会),会员,2014-

承担项目

1.国家自然科学基金重点项目,41830650,青藏高原典型内陆湖水面蒸发观测研究,2019.1至2023.12,主持; 

2.科技部重点研发项目之第一课题,2018YFC1505701,高原陆面-边界层物理过程的观测和机理研究,2018.122021.11,主持; 

3.国家科技专项第二次青藏高原综合科学考察研究任务一之第3专题地气相互作用及其气候效应2019QZKK0103,2019-2022),参加; 

4.中国科学院战略性先导科技专项(A类)泛第三极环境变化与绿色丝绸之路建设之子课题西风-季风断面上陆气相互作用和水热变化及其对周边的影响XDA200601012018-2022),参加; 

5.中国科学院前沿科学重点研究项目第三极地区复杂地表能量和水分交换规律研究QYZDJ-SSW-DQC0192016-2020),参加; 

6.国家自然科学基金重点项目,91737205,气溶胶及地表反照率在青藏高原陆气耦合模拟中的作用研究,2018.12021.12,参加; 

7.国家自然科学基金集成项目,91637313,青藏高原地-气系统多源信息综合数据共享平台研发,2017.12019.12,已结题,参加; 

8.国家自然科学基金面上项目,41375009,遥感资料结合地面观测研究青藏高原中部地区蒸散发分布,2014.12017.12,已结题,主持; 

9.国家自然科学基金青年科学基金项目,40705004ASTER资料结合地面观测研究青藏高原纳木错地区区域能量通量分布,2008.012010.12,已结题,主持。 

获奖及荣誉

 

代表论著

2020 

1.Ma Yaoming, Z.Hu,  Z.Xie, Weiqiang Ma, B.Wang, X.Chen, M.Li, L.Zhong, F.Sun, L.Gu, C.Han, L.Zhang, X. Liu, Z.Ding, G. Sun, S. Wang, Y.Wang, and Z.Wang, 2020, A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau, Earth System Science Data (ESSD), 12, 2937–2957, doi10.5194/essd-2020-85.  

2.Wang, B., Ma Yaoming, Z.Su, Y.Wang, Weiqiang Ma, 2020, Quantifying the evaporation amounts of 75 high elevation large dimictic lakes on the Tibetan Plateau, Science Advances, 6(26), eaay8558. doi: 10.1126/sciadv.aay8558.  

3.Joshi, B., Ma Yaoming, Weiqiang Ma, M.Sigdel, B.Wang, S.Subba, 2019, Seasonal and Diurnal Variations of Carbon Dioxide and Energy Fluxes over Three Land Cover Types of Nepal, Theoretical and Applied Climatology, 139(1), 415-430doi:10.1007/s00704-019-02986-7.  

4.Regmi, R., Ma Yaoming, Weiqiang Ma, B. Baniya,B.Bashir, 2020, Interannual Variation of NDVI, Precipitation and Temperature during the Growing Season in Langtang National Park, Central Himalaya, NepalApplied Ecology and Environmental Sciences, 8(5), 218-228, DOI: 10.12691/aees-8-5-5.  

5.Bayable.E, Ma Yaoming, X. Chen, Weiqiang Ma, B.Wang, Z. Ding and Z. Zhu,2020 Estimation of the distribution of the total net radiative flux from satellite and automatic weather station data in the Upper Blue Nile basin, Ethiopia, Theoretical and Applied Climatology , doi:10.1007/s00704-020-03397-9.

6.Wasti,S. Weiqiang Ma, Ma Yaoming, 2020, Estimation of land surface evapotranspiration using the METRIC model in Nepal, Atmospheric and Oceanic Science Letters, DOI: 10.1080/16742834.2020.1824984.  

7.Meng, C., Y. Xu, Q. Li, Ma Yaoming, Q.Feng, Weiqiang Ma, J.Pan, K.Li, 2020,Analyses of observed features and future trend of extreme temperature events in Inner Mongolia of China, Theoretical and Applied Climatology, 139: 577–597, doi:10.1007/s00704-019-02969-8.  

8.Latif, Y., L., Ma Yaoming, Weiqiang Ma, S. Muhammad, M. Adlan, M.Yassen, R.Fealy, 2020, Differentiating Snow and  Glacier Melt Contribution to Runoff in the Gilgit River Basin via Degree-Day Modelling Approach, Atmosphere, 11, 1023; doi:10.3390/atmos11101023.  

9.胡伟,马伟强,马耀明,谢志鹏,2020GLDAS资料驱动的Noah-MP 陆面模式青藏高原地表能量交换模拟性能评估,高原气象,393):486-498.   

  

2019 

10.Weiqiang Ma, Ma Yaoming, 2019The evaluation of AMSR-E soil moisture data in atmospheric modeling using a suitable time series iteration to derive land surface fluxes over the Tibetan Plateau. PLoS ONE 14(12): e0226373. doi:10.1371/journal.pone.0226373. 

11.Liu, L.*, Ma Yaoming*, M.Menenti, Weiqiang Ma, 2019, Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: a snow event simulation over the Tibetan Plateau, Journal of Geophysical Research: Atmospheres,124, 209-226, doi: 10.1029/2018JD029208. 

12.Wang, B. *, Ma Yaoming*, Y.Wang, Z.Su*, Weiqiang Ma, 2019, Significant differences exist in lakeatmosphere interactions and the evaporation rates of high-elevation small and large lakes, Journal of Hydrology, 573, 220-234, doi: 10.1016/j.jhydrol.2019.03.066. 

13.Subba, S., Ma Yaoming*, Weiqiang Ma, 2019, Spatial and temporal analysis of precipitation extremities of Eastern Nepal in the last two decades (1997–2016). Journal of Geophysical Research: Atmospheres, 124, 7523–7539, doi: 10.1029/2019JD030639. 

14.Wang, B., Ma Yaoming, Weiqiang Ma, Z. Su, and X. Dong, 2019Evaluation of ten methods for estimating evaporation in a small high-elevation lake on the Tibetan Plateau, Theoretical and Applied Climatology, 136: 1033-1045, doi: 10.1007/s00704-018-2539-9. 

15.Han, Y. , Weiqiang Ma*, Ma Yaoming, C.Sun, 2019, Variations of surface heat fluxes over the Tibetan Plateaubefore and after the onset of the South Asian summer monsoon during 1979–2016. Journal of Meteorological Research, 33(3), 491–500, doi: 10.1007/s13351-019-8616-x. 

16.Joshi, B., Ma Yaoming*Weiqiang Ma, M.Sigdel, B.Wang, S.Subba, 2019, Seasonal and Diurnal Variations of Carbon Dioxide and Energy Fluxes over Three Land Cover Types of Nepal, Theoretical and Applied Climatology, doi:10.1007/s00704-019-02986-7. 

17.Xie, Z*., Z.Hu, Ma Yaoming , G.Sun, L.Gu,S.Liu, Y.Wang, H.Zheng, Weiqiang Ma*, 2019, Modeling blowing snow over the Tibetan Plateau with the Community Land Model: Method and preliminary evaluation, Journal of Geophysical Research: Atmospheres, 124. doi :10.1029/2019JD030684. 

18.Meng,C., Y Xu, Q Li, Ma Yaoming, Q Feng, Weiqiang Ma, J.Pan, K.Li, 2019, Analyses of observed features and future trend of extreme temperature events in Inner Mongolia of ChinaTheoretical and Applied Climatology, doi: 10.1007/s00704-019-02969-8 

19.Latif, Y. , Ma Yaoming, Weiqiang Ma,Y.Muhammad, Y. Muhammad2019 Snowmelt Runoff Simulation During Early 21st Century Using Hydrological Modelling in the Snow-Fed Terrain of Gilgit River Basin (Pakistan), Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, H. I. Chaminé et al. (eds.), Advances in Science, Technology & Innovation, doi :10.1007/978-3-030-01572-5_18 

20.Luintel,N., Weiqiang Ma*, Ma Yaoming, B.Wang, S. Sunil, 2019, Spatial and temporal variation of daytime and nighttime MODIS land surface temperature across NepalAtmospheric and Oceanic Science Letters, doi: 10.1080/16742834.2019.1625701. 

  

2018 

21.Liu, L.*, Ma Yaoming*, M. Menenti, Weiqiang Ma, 2018, Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: a snow event simulation over the Tibetan Plateau, Journal of Geophysical Research: Atmospheres, DOI: 10.1029/2018JD029208. 

22.Meng, C., Ma Yaoming, Weiqiang Ma,Y. Xu, 2018Modeling of a severe winter drought in eastern China using different initial and lateral boundary forcing datasets, Theoretical and Applied Climatology, 133(3-4): 763-773, doi:10.1007/s00704-017-2217-3. 

23.Wang, B., Ma Yaoming, Weiqiang Ma, Z. Su, and X. Dong, 2018Evaluation of ten methods for estimating evaporation in a small high-elevation lake on the Tibetan Plateau, Theoretical and Applied Climatology, doi: 10.1007/s00704-018-2539-9 

24.Zhang, L., Ma Yaoming*, Weiqiang Ma, and B. Wang, 2018, Comparison of different generation mechanisms of free convection between two stations on the Tibetan Plateau. Advances in Atmospheric Sciences, 35(9), 1137-1144, doi: 10.1007/s00376-018-7195-6. 

25.谷星月, 马耀明*, 马伟强, 孙方林, 2018,青藏高原地表辐射通量的气候特征分析[J]. 高原气象, 37(6): 1458-1469. 

26.韩熠哲,马伟强,马耀明,孙翠艳,2018 ,南亚夏季风爆发前后青藏高原地表热通量的长期变化特征分析,气象学报,766):920-929. 

27.许洁, 马耀明*, 孙方林*, 马伟强, 2018,湖泊和上风向地形对纳木错地区秋季降水影响[J]. 高原气象, 37(6): 1535-1543. 

  

2017 

28.Ding, Z., Ma Yaoming *, Z. Wen, Weiqiang Ma, S. Chen, 2017, A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation, Theoretical and Applied Climatology, 129: 59–76. DOI: 10.1007/s00704-016-1754-5. 

29.Huang, F., Weiqiang Ma, B. Wang, Z. Hu, Ma Yaoming, G. Sun, Z. Xie, Y. Lin, 2017, Air temperature estimation with MODIS data over the northern Tibetan Plateau. Advances in Atmospheric Sciences, 34(5), 650–662, doi: 10.1007/s00376-016-6152-5. 

30.Ma Yaoming, Weiqiang Ma, L. Zhong, Z. Hu, M. Li, Z. Zhu, C. Han, B. Wang, X. Liu,2017: Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia, Scientific Reports, 7: 44574 , doi:10.1038/srep44574. 

31.Meng, C., Ma Yaoming, Weiqiang Ma, Y. Xu,2017, Modeling of a severe winter drought in eastern China using different initial and lateral boundary forcing datasets, Theoretical and Applied Climatology, DOI 10.1007/s00704-017-2217-3. 

32.Wang, B., Ma Yaoming, Weiqiang Ma, and Z. Su, 2017, Physical controls on half-hourly, daily, and monthly turbulent flux and energy budget over a high-altitude small lake on the Tibetan Plateau, Journal of Geophysical Research-Atmospheres, 122, doi:10.1002/2016JD026109. 

33.郭晨露, 马耀明, 马伟强, 张烺, 韩存博, 孟纯纯, 徐超,2017,青藏高原珠峰地区戈壁下垫面上实际蒸散发量和蒸发皿蒸发量的关系研究,高原气象, 36(1): 79-86 DOI: 10.7522/j.issn.1000-0534.2016.00020. 

34.韩熠哲, 马伟强, 王炳赟, 马耀明, 田荣湘,2017,青藏高原近30年降水变化特征分析,高原气象,36(6): 1477-1486. 

  

2016 

35.Ding Z, Y. Ma*, Z. Wen, Weiqiang Ma, S. Chen, 2016, A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation, Theoretical and Applied Climatology, DOI: 10.1007/s00704-016-1754-5.  

36.黄芳芳, 马伟强, 李茂善, 马耀明. 2016, 藏北高原地表温度对气候变化响应的初步分析[J]. 高原气象, 35(1):55-63. 

37.孟纯纯, 马耀明, 马伟强, 勾鹏, 白杨. 2016, 中国东部秋冬季极端干旱事件的数值模拟研究[J]. 高原气象, (05):1327-1338. 

  

2015 

38.Weiqiang Ma, Y. Ma, 2015, Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau, Theoretical and Applied Climatology, DOI 10.1007/s00704-015-1495-x.   

39.Ma Y., Z. Zhu, P. M. Amatya, X. Chen, Z. Hu, L. Zhang, M. Li, and Weiqiang Ma, 2015, Atmospheric boundary layer characteristics and land-atmosphere energy transfer in the Third Pole area, IAHS Publ. 368 , 27-32,doi:10.5194/piahs-368-27-2015. 

40.Wang B., Y. Ma, X. Chen, Weiqiang Ma, Z. Su, M. Menenti, 2015, Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau, Journal of Geophysical Research-Atmospheres, doi: 10.1002/2015JD023863.   

  

2014 

41.Biermann T., B. Wolfgang, Weiqiang Ma, X. Chen, E. Thiem, Y. Ma, T. Foken, 2014, Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau, Theoretical and Applied Climatology,116:301–316. 

42.Weiqiang Ma, Y. Ma, H. Ishikawa, 2014, Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau, Atmospheric Research, 138:91–97. 

43.Ma Y., Z. Zhu, L. Zhong, B. Wang, C. Han, Z. Wang, Y. Wang, L. Lu, P. M. Amatya, Weiqiang Ma, and Z. Hu, 2014, Combining MODIS, AVHRR and in situ data for evapotranspiration estimation over heterogeneous landscape of the Tibetan Plateau, Atmospheric Chemistry and Physics, 14, 1507–1515. 

44.Song, M., Y. Ma, Y. Zhang, Weiqiang Ma, and S. Luo, 2014. An off‐line simulation of land surface processes over the northern Tibetan PlateauSciences in Cold and Arid Regions, 6(3): 0236–0246. DOI: 10.3724/SP.J.1226.2014.00236. 

45.韩存博, 马耀明, 刘新, 马伟强. 2014, 利用ASTER数据反演珠峰地区地表特征参数[J]. 高原气象, 33(3): 596-606. 

  

2013年之前 

46.Weiqiang Ma, Y. Ma, H. Ishikawa, Z. Su, 2013, Estimation of land surface energy fluxes from remote sensing using one-layer modeling approaches. Remote Sensing of Energy Fluxes and Soil Moisture Content, ISBN-13: 9781466505780, CRC Press. (one chapter) 

47.Zhong Lei, Ma Yaoming, Ma Weiqiang, Su Zhongbo, Pan Xiao, Wang Binbin, Han Cunbo, 2013, Drought monitoring for the middle reaches of yarlung zangbo river and its two tributaries from satellite images, European Space Agency, (Special Publication), v 704. 

48.Ma, W., M. Hafeez, H. Ishikawa, and Y. Ma, 2012, Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia, Theoretical and applied climatology, DOI: 10.1007/s00704-012-0754-3. 

49.Ma, W., M. Hafeez, U. Rabbani, H. Ishikawa, and Y. Ma, 2012, Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia. Atmospheric Environment, 59, 408–414. 

50.Ma, Y., B. Wang, L. Zhong, W. Ma, 2012, The regional surface heating field over the heterogeneous landscape of the Tibetan Plateau using MODIS and in-situ data, Advances in Atmospheric Sciences, 29(1): 47-53. 

51.ZhongL., Y. Ma, W. Ma, Y. Fu, Z. Su, Mhd. Suhyb Salama, Duo Chu, Ciren Bianba,2012, Remote Sensing of Land Surface Parameters in the Middle Reaches of YarlungZangbo River and Its Two Tributaries from AVHRR and MODIS Data, Journal of the Meteorological Society of Japan, 90C: 75-86, doi:10.2151/jmsj.2012-C05. 

52.Ma Weiqiang, M. Hafeez, R. Umair, Y. Ma, B. Su, 2011, Use of field observations and SEBS to retrieve heat fluxes for irrigation areas of Australia, IAHS-AISH Publication, v 343, p 53-58. 

53.Ma, W., Ma, Y., Bob Su, 2011, Feasibility of Retrieving Land Surface Heat Fluxes from ASTER Data Using SEBS: a Case Study from the NamCo Area of the Tibetan Plateau, Arctic, Antarctic, and Alpine Research, 43(2): 239-245/DOI:10.1657/1938-4246-43.2.239. 

54.Ma, W., Ma, Y., Hu, Z., Su, Z., Wang, J., and Ishikawa, H.2011 Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery, Hydrology and Earth System Sciences,15,1403-1413, doi:10.5194/hess-15-1403-2011. 

55.Ma, Y., L. Zhong, B. Wang, W. Ma, X. Chen, and M. Li, 2011, Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in-situ data, Atmos. Chem. Phys., 11, 10461–10469, www.atmos-chem-phys.net/11/10461/2011/doi:10.5194/acp-11-10461-2011. 

56.Ma, Y., M. Li, X. Chen, S. Wang, R. Wu, W. Ma, L. Zhong, B. Wang, C. Zhu, T. Yao, 2011, Third Pole Environment (TPE) program: a new base for the study of atmosphere–land interaction over the heterogeneous landscape of the Tibetan Plateau and surrounding areas, IAHS Publ. 343, 110-117. 

57.Song, M., Y. Ma, Y. Zhang, M. Li, W. Ma, F. Sun, 2011. Climate change features along the Brahmaputra Valley in the past 26 years and possible causes, Climatic Change, 106:649–660. 10.1007/s10584-010-9950-2. 

58.Ma Weiqiang, Ma Yaoming, Zhong Lei, 2010, Retrieving land surface temperature from aster data using TES: A case study on the Namco area of the Tibetan Plateau, European Space Agency, (Special Publication), v 684. 

59.Ma Yaoming, Ma Weiqiang, Wang Yongjie, Zhong Lei, Li Maoshan, Ishikawa, Hirohiko, 2009, Study of the energy and water cycle over the heterogeneous landscape of the northern Tibetan Plateau, IAHS-AISH Publication, v 335, p 168-176. 

60.Ma Yaoming, Y. Wang, R. Wu, Z. Hu, K. Yang, M. Li, W. Ma, L. Zhong, F. Sun, X. Chen, Z. Zhu, S. Wang, and H. Ishikawa, 2009: Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau, Hydrology and Earth System Sciences, 13, 1103-1111. 

61.Ma, W., Y. Ma, M. Li, Z. Hu, L. Zhong, Z. Su, H. Ishikawa, J. Wang, 2009, Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery, Hydrology and Earth System Sciences, 13, 57–67.  

62.Zhong Lei, Y. Ma, Z. Su, L. Lu, W. Ma, and Y. Lu, 2009, Land-Atmosphere Energy Transfer and Surface Boundary Layer Characteristics in the Rongbu Valley on the Northern Slope of Mt. Everest, Arctic, Antarctic, and Alpine Research, 41(3), 2009, 396–405. 

63.Fanglin Sun, Y. Ma, M. Li, W. Ma, H. Tian, S. Metzge, 2007, Boundary layer effects above a Himalayan valley near Mount Everest, Geophysics Research Letter, 34, L08808, doi:10.1029/2007GL029484.  

64.Ma Weiqiang, Ma Yaoming, Li Maoshan, Zhao Yizhou, Sun Fanglin, Song Minhong, 2007, Analyses on seasonal variation characteristics of surface energy in the northern Tibetan Plateau and arid region of northwest China, Taiyangneng Xuebao/Acta Energiae Solaris Sinica, v 28, n 8, p 922-928. 

65.Ma, W., Y. Ma, 2006, The annual variations on land surface energy in the northern Tibetan Plateau, Environmental Geology, 50(5). DOI 10.1007/s00254-006-0238-9.  

66.Ma Yaoming, W. Ma, M. Li, Z. Su, M. Menenti, O. Tsukamoto, H. Ishikawa, T. Koike, J. Wen, 2004, Determination of regional heat fluxes over heterogeneous land surfaces, IAHS-AISH publication, n 289, p 206-214. 

67.吴晓鸣, 马伟强, 马耀明. 2013, 夏季藏北高原地表热通量特征观测与模拟[J]. 高原气象, 32(5):1246-1252. 

68.王宾宾, 马耀明, 马伟强. 2012, 青藏高原那曲地区MODIS地表温度估算[J]. 遥感学报, 16(6):1289-1309. 

69.李茂善, 马耀明, 马伟强, Ishikawa Hirohiko, 孙方林, Ogino Shin-Ya. 2011, 藏北高原地区干,雨季大气边界层结构的不同特征[J]. 冰川冻土, 33(1): 72-79. 

70.宋敏红, 马耀明, 张宇, 李茂善, 马伟强, 孙方林. 2011, 雅鲁藏布江流域气温变化特征及趋势分析[J]. 气候与环境研究, 16(6):760-766. 

71.仲雷, 马耀明, 马伟强, 除多, 边巴次仁. 2011, 西藏中部一江两河地区地表通量的卫星遥感估算[J]. 冰川冻土, 33(2): 309-317. 

72.马伟, 马耀明, 仲雷, 除多, 边巴次仁. 2010, 利用ASTER数据估算西藏一江两河地区地表特征参数[J]. 高原气象, 29(5): 1351-1355. 

73.马伟强. 2009, 利用SEBS估算地表通量研究——以纳木错为例[A]. 中国气象学会气候变化委员会、国家气候中心. 26届中国气象学会年会气候变化分会场论文集[C]. 

74.陈学, 马耀明, 李茂善, 马伟强, 王宏. 2008, 藏北地区近地层大气和土壤特征量分析[J]. 高原气象, 27(5): 941-948. 

75.李茂, 马耀明, 吕世华, 胡泽勇, Ishikawa Hirohiko, 马伟强, 孙方林, 宋敏红. 2008, 藏北高原地表能量和边界层结构的数值模拟[J]. 高原气象, 27(1):36-45. 

76.马伟强, 马耀明, T. Matsunaga, 胡泽勇, 仲雷, 李茂善, 赵逸舟, 王永杰, 王介民. 2008, 利用ASTER数据估算20024月阿克苏地表特征和植被参数[J]. 高原气象, 27(3):544-550. 

77.李茂, 马耀明, Hirohiko Ishikawa, 马伟强, 孙方林, 王永杰, 朱志鲲. 2007, 珠穆朗玛峰北坡地区近地层及土壤微气象要素分析[J]. 高原气象, 26(6):1263-1268. 

78.马伟, 戴有学, 马耀明, 孙方林, 李茂善, 仲雷, 王介民. 2007, 珠峰北坡地区地表辐射和能量季节变化的初步分析[J]. 高原气象, 26(6):1237-1243. 

79.马伟, 马耀明, 李茂善, 赵逸舟, 孙方林, 宋敏红. 2007, 藏北高原地区和西北干旱区地表能量季节变化特征对比分析[J]. 太阳能学报, 28(8):922-928. 

80.马耀, 王永杰, 马伟强, 仲雷, 苏中波. 2007, 珠峰复杂地表区域能量通量的卫星遥感[J]. 高原气象, 26(6):1231-1236. 

81., 马耀明, 胡晓, 陆登荣, 马伟强, 李茂善, 孙方林. 2007, 使用MODIS陆地产品LSTNDVI监测中国中、西部干旱[J]. 高原气象, 26(5):1086-1096. 

82., 马耀明, 文军, 李茂善, 孙方林, 马伟强. 2007, 秋季珠峰复杂地形下地表能量通量卫星遥感研究[J]. 高原气象, 26(6):1293-1299. 

83.赵逸, 马耀明, 黄镇, 袁铁, 胡晓, 李英, 马伟强. 2007, 利用TRMM/TMI资料反演青藏高原中部土壤湿度[J]. 高原气象, 26(5):952-957. 

84.赵逸, 马耀明, 马伟强, 李茂善, 孙方林, 王磊, 向鸣. 2007, 藏北高原土壤温湿变化特征分析[J]. 冰川冻土, 29(4):578-583. 

85.马伟强, 马耀明. 2006, 西北干旱区地表能量初步分析[J]. 干旱区研究, (01):76-82. 

86.马耀, 姚檀栋, 王介民, 胡泽勇, 石川裕彦, 马伟强, M. Menenti, 苏中波. 2006, 青藏高原复杂地表能量通量研究[J]. 地球科学进展, 21(12):1215-1223. 

87.孙方, 马耀明, 马伟强, 李茂善. 2006, 珠峰地区大气边界层结构的一次观测研究[J]. 高原气象, 25(6):1014-1019. 

88.仲雷, 马耀明, 苏中波, 刘新, 李茂善, 王永杰, 马伟强. 2006, 珠峰北坡地区近地层大气湍流与地气能量交换特征[J]. 地球科学进展, 21(12):1293-1303. 

89.马伟强, 戴有学, 马耀明, 胡泽勇, 李茂善, 王介民. 2005, 利用无线电探空资料分析藏北高原地区边界层及其空间结构特征[J]. 干旱区资源与环境, 19(3):40-46. 

90.马伟强, 马耀明, 胡泽勇, 李茂善, 孙方林, 谷良雷, 王介民, 钱泽雨. 2005, 藏北高原地区辐射收支和季节变化与卫星遥感的对比分析[J]. 干旱区资源与环境, 19(1):109-115. 

91.马伟强, 马耀明, 李茂善, Z. Su, 王介民. 2005, 藏北高原地区地表辐射出支和能量平衡的季节变化[J]. 冰川冻土, 27(5):673-679. 

92.李茂善, 马耀明, 胡泽勇, 马伟强, 王介民, Ogino Shin-Ya. 2004, 藏北那曲地区大气边界层特征分析[J]. 高原气象, 23(5):728-733. 

93.马伟强, 马耀明, 胡泽勇, 李茂善, 王介民, 钱泽雨. 2004, 藏北高原地面辐射收支的初步分析[J]. 高原气象, 23(3):348-352. 

94.马耀明, 戴有学, 马伟强, 李茂善, 王介民, 文军, 孙方林. 2004, 干旱半干旱区非均匀地表区域能量通量的卫星遥感参数化[J]. 高原气象, 23(2):139-146. 

95.马耀明, 马伟强, 胡晓, 田辉, 李茂善, 王介民, 文军, 高峰. 2004, 卫星遥感确定沙特阿拉伯吉达地区非均匀地表区域地表参数和能量通量[J]. 干旱气象, (04):10-16. 

96.马耀明, 马伟强, 李茂善, 孙方林, 王介民. 2004, 黑河中游非均匀地表能量通量的卫星遥感参数化[J]. 中国沙漠, 24(4):392-399. 

97.马耀明, 李茂善, 马伟强, 王介民. 2003, 西北干旱区及高原上卫星遥感非均匀地表区域能量通量研究[J]. 干旱气象, (03):34-42. 

98.马耀明, 马伟强, 胡泽勇, 李茂善, 王介民, 石川裕彦, 塚本修. 2002, 青藏高原草甸下垫面湍流强度相似性关系分析[J]. 高原气象, 21(5):514-517.