人才详细信息

姓名:曹现勇
性别:
学历:博士
专家类别:研究员
电话:
传真:010-8409 7079
电子邮箱:xcao@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

个人简介

曹现勇,1981年生,中国科学院青藏高原研究所研究员,中组部国家高层次人才特殊支持计划青年人才(2021),中国科学院“率先行动”百人计划人才(2018)。从事基于孢粉的晚第四纪东亚植被与气候时空格局及人类土地利用定量重建研究。任中国环境科学学会生态环境模型专业委员会副主任、中国地理学会微体与古环境工作组副组长、中国生态学学会高寒生态专业委员会委员、中国冰冻圈科学学会(筹)青年工作委员会委员、Quaternary Science Reviews和地理科学杂志编委,地球科学(Journal of Earth Science)青年编委。以第一或通讯作者在Nature Communications、Global Change Biology、Earth System Science Data(2篇)、Science Bulletin(2篇)、Quaternary Science Reviews(5篇)、Climate of the Past(2篇)等杂志发表SCI论文32篇。

教育背景

2002.09 – 2006.06,河北师范大学资源与环境科学学院,学士

2006.09 – 2009.06,河北师范大学资源与环境科学学院,硕士

2009.09 – 2015.06,河北师范大学生命科学学院,博士结业

2010.10 – 2015.02,德国波茨坦大学,博士

工作经历

2015.03–2018.02,德国阿尔弗里德?魏格纳极地与海洋研究所,博士后

2018.03–2020.02,中国科学院青藏高原研究所,副研究员

2020.02–今,   中国科学院青藏高原研究所,研究员

研究方向

第四纪孢粉学

职务

社会任职

 

承担项目

1.中德科学中心交流项目:青藏高原和西伯利亚北部多尺度气候-土壤-生态系统-人类交互作用(2021–2023),主持
2.俄罗斯科学基金会项目:Holocene climate variability and biodiversity changes in the Altai Mountains based on the study of high-resolution lacustrine records (2020–2022),参与
3.国家自然科学基金面上项目:青藏高原东缘花粉及菌孢现代过程和晚全新世人类活动对植被的影响(2019–2022),主持
4.国家第二次青藏高原综合科学考察研究子专题:碳氮循环的生物学过程(2019–2023),共同负责人
5.国家自然科学基金重点项目:青藏高原南部史前农业发展与人-环境相互作用(2020–2024),参与
6.国家自然科学基金重点项目:基于花粉产量定量重建我国6ka以来的土地覆被(1°×1°)变化(2017–2021),参与
7.德国联邦教育及研究部项目:PalMod计划,参与

获奖及荣誉

Past Global Changes(PAGES)workshop资助,PAGES协会,2017 

省级优秀大学毕业生,河北省教育厅,2006 

代表论著

第一作者及通讯作者(下划线代表学生):

1. Zhang, Y., Wang, N., Liu, L., Wang, M., Yu, X., Cao, X.*, 2023. Vegetation stability during the last two centuries on the western Tibetan Plateau: a palynological evidence. Frontier of Earth Science, DOI: 10.1007/s11707-023-1090-x.

2.   Li, W., Wang, N.*, Liang, C., Yu, S., Tian, F., Cao, X.*, 2023. Regional peculiarities in importance of precipitation and temperature on mid-to-late Holocene arboreal degradation in the eastern Tibetan Plateau. Global and Planetary Change, 229: 104252. DOI: 10.1016/j.gloplacha.2023.104252.

3.    Su, M., Wang, N.*, Dong, H., Zhang, H., Xu, Q., Liu, J., Cao, X.*, 2023. Influence of human impacts on modern pollen assemblages and an assessment of their reliability in reconstructing climate in eastern China. Quaternary International, 670: 45–54. DOI: https://doi.org/10.1016/j.quaint.2023.09.011.

4.   Wang, Y., Cao, C., Zhang, Y., Liu, L., Wang, N., Li, W., Cao, X.*, 2023. Spatial distribution of charcoal in topsoil and its potential determinants on the Tibetan Plateau. Frontier of Earth Science, DOI: 10.1007/s11707-023-1090-x.

5.   Wang, N., Zhang, Y., Liu, L., Li, W., Yu, X., Sun, J., Cao, X.*, 2023. Pollen analysis of middle to late Holocene records shows little evidence for grazing disturbance to alpine grassland on the Tibetan Plateau until modern times. Palaeogeography, Palaeoclimatology, Palaeoecology, 627: 111745. DOI: 10.1016/j.palaeo.2023.111745.

6.   Yi, K., Zhang, Y., Chen, M., Zhang, Z.*, Li, C., Li, W., Zhang, L., Wang, N., Cao, X.*, 2023. Vegetation stability characterized the central Tibetan Plateau over the last two millennia but has recently begun to change. Palaeogeography, Palaeoclimatology, Palaeoecology, 625: 111689.

7.   Liu, L., Wang, N., Zhang, Y., Yu, X., Cao, X.*, 2023. Performance of pollen-based vegetation cover reconstruction using lake and soil samples on the Tibetan Plateau. Vegetation History and Archaeobotany, 32: 157–169.

8.   Wang, N.*, Tian, Y., Cao, X.*, Wei, M., 2023. Palynological data confirm the occurrence of forest on the Loess Plateau of central China during the Middle Quaternary (MIS13). Palaeogeography, Palaeoclimatology, Palaeoecology, 613: 111410.

9.   Cao, X., Wang, N., Cao, Y., Liu, L., Zhang, Y., Hou, X., Zhao, W., Li, Y., Tian, F.*, 2023. Hostile climate during the Last Glacial Maximum caused sparse vegetation on the north-eastern Tibetan Plateau. Quaternary Science Reviews, 301: 107916.

10.  Wang, N., Liu, L., Hou, X., Zhang, Y., Wei, H., Cao, X.*, 2022. Palynological evidence reveals an arid early Holocene for the north-east Tibetan Plateau. Climate of the Past, 18: 2381–2399. DOI: 10.5194/cp-18-2381-2022.

11.   Cao, X.*, Tian, F., Herzschuh, U., Ni, J., Xu, Q., Li, W., Zhang, Y., Luo, M., Chen, F., 2022. Human activities have reduced plant diversity in eastern China over the last two millennia. Global Change Biology, 28(16): 4962–4976.

12.   Li, W., Tian, F., Rudaya, N., Herzschuh, U., Cao, X.*, 2022. Pollen-based Holocene thawing-history of permafrost in northern Asia and its potential impacts on climate change. Frontiers in Ecology and Evolution, 10: 894471.

13.   Wang, N., Liu, L., Zhang, Y., Cao, X.*, 2022. A modern pollen dataset for the forest-meadow-steppe ecotone from the Tibetan Plateau and its potential use in past vegetation reconstruction. Boreas, 51: 847–858.

14.  Liu, L., Hou, X., Yu, X., Wang, N., Zhang, Y., Cao, X.*, 2022. Vegetation and environmental changes since the Last Glacial Maximum inferred from a lake core from Saiyong Co, central Tibetan Plateau. The Holocene, 32(6): 543–553.

15.  Zhang, Y., Li, Y., Liu, L., Wang, N., Cao, X.*, 2022. No evidence of human disturbance to vegetation in the Zoige Region (north-eastern Tibetan Plateau) in the last millennium until recent decades. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110843.

16.  Cao, X.*, Chen, J., Tian, F., Xu, Q., Herzschuh, U., Telford, R., Huang, X., Zheng, Z., Shen, C., Li, W., 2022. Long-distance modern analogues bias results of pollen-based precipitation reconstructions. Science Bulletin, 67: 1115–1117.

17.   Zhang, N., Cao, X.*, Xu, Q., Huang, X., Herzschuh, U., Shen, Z., Peng, W., Liu, S., Wu, D., Wang, J., Xia, H., Zhang, D.*, Chen, F., 2022. Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation. Catena, 210: 105892.

18.  Hou, X., Liu, L., Sun, Z., Wang, M., Cao, X.*, Hou, J.*, 2022. Enhanced aridity in the source region of the Yangtze River since 5.8 ka revealed by the sediments of Saiyong Co. Quaternary International, 613: 81–90.

19.  Cao, X.*, Tian, F., Li, K., Ni, J., Yu, X., Liu, L., Wang, N., 2021. Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions. Earth System Science Data, 13: 3525–3537.

20.  Cao, X.*, Tian, F., Andreev, A., Anderson, P.M., Lozhkin, A.V., Bezrukova, E., Ni, J., Rudaya, N., Stobbe, A., Wieczorek, M., Herzschuh, U.*, 2020. A taxonomically harmonized and temporally standardized fossil pollen dataset from Siberia covering the last 40 kyr. Earth System Science Data, 12: 119–135.

21.  Liu, L., Wang, W.*, Chen, D., Niu, Z., Wang, Y., Cao, X.*, Ma, Y., 2020. Soil-surface pollen assemblages and quantitative relationships with vegetation and climate from the Inner Mongolian Plateau and adjacent mountain areas of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 543: 109600.

22.  Herzschuh, U.*, Cao, X.*, Laepple, T., Dallmeyer, A., Telford, R., Ni, J., Chen, F., Kong, Z., Liu, G., Liu, K.-B., Liu, X., Stebich, M., Tang, L., Tian, F., Wang, Y., Wischnewski, J., Xu, Q., Yan, S., Yang, Z., Yu, G., Zhang, Y., Zhao, Y., Zheng, Z., 2019. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nature Communications, 10: 2376.

23.  Cao, X.*, Tian, F., Dallmeyer, A., Herzschuh, U.*, 2019. Northern Hemisphere biome changes (>30°N) since 40 cal ka BP and their driving factors inferred from model-data comparisons. Quaternary Science Reviews, 220: 291–309.

24.  Cao, X.*, Tian, F., Li, F., Gaillard, M.-J., Rudaya, N., Herzschuh, U., 2019. Pollen-based quantitative land-cover reconstruction for northern Asia during the last 40 ka. Climate of the Past, 15: 1503–1536.

25.  Cao, X.*, Tian, F., Ding, W., 2018. Improving the quality of pollen-climate calibration-sets is the primary step for ensuring reliable climate reconstructions. Science Bulletin, 63: 1317–1318.

26.   Cao, X., Tian, F.*, Telford, R., Ni, J., Xu, Q., Chen, F., Liu, X., Stebich, M., Zhao, Y., Herzschuh, U.*, 2017. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation. Quaternary Science Reviews, 178: 37–53.

27.  Tian, F., Cao, X.*, Dallmeyer, A., Zhao, Y., Ni, J., Herzschuh, U., 2017. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia. Quaternary Science Reviews, 156: 1–11.

28.  Tian, F., Cao, X.*, Dallmeyer, A., Ni, J., Zhao, Y., Wang, Y., Herzschuh, U., 2016. Quantitative woody cover reconstructions from eastern continental Asia of the last 22 ka reveal strong regional peculiarities. Quaternary Science Reviews, 137: 33–44.

29.  Cao, X.*, Herzschuh, U., Ni, J., Zhao, Y., B?hmer, T., 2015. Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 yr. The Holocene, 25: 79–91.

30.  Cao, X.*, Herzschuh, U., Telford, R.J., Ni, J., 2014. A modern pollen-climate dataset from China and Mongolia: assessing its potential for climate reconstruction. Review of Palaeobotany and Palynology, 211, 87–96.

31.   Cao, X., Ni, J.*, Herzschuh, U.*, Wang, Y., Zhao, Y., 2013. A late Quaternary pollen dataset in eastern continental Asia for plant migration study, vegetation and climate reconstructions: set up and evaluation. Review of Palaeobotany and Palynology, 194: 21–37.

32.   Cao, X., Xu, Q.*, Jing, Z., Li, Y., Tian, F., 2010. Holocene climate change and human impacts implied from the pollen records in Anyang, central China. Quaternary International, 227: 3–9.

 

其他合作论文:

1. Ma, L., Li, Z., Xu, Q., Li, H., Zhang, K., Li, Y., Zhang, R., Cao, X., Zhang, S.: Modern pollen assemblages from the Tibetan Plateau and their significance for reconstructions of past vegetation. Boreas. DOI: 10.1111/bor.12641.

2.   Tian, F., Chen, M., Jia, W., Herzschuh, U., Cao, X., 2023. Complementarity of lacustrine pollen and sedimentary DNA in representing vegetation on the central-eastern Tibetan Plateau. Frontiers of Earth Science, DOI: 10.1007/s11707-022-1075-1.

3.    Hou, X., Wang, N., Sun, Z., Yuan, K., Cao, X., Hou, J., 2023. BrGDGTs-based seasonal paleotemperature reconstruction for the last 15,000 years from a shallow lake on the eastern Tibetan Plateau. Climate of the Past DOI: 10.5194/cp-2023-32.

4.    Tian, F., Chen, M., Xu, Q., Cao, X., 2023. A cool-arid climate with large temperature seasonality implied by arboreal pollen in the early Holocene, north-central China. Journal of Earth Science, 34(5): 1629–1631.

5.   Chen, M., Tian, F., Cao, X., Zhang, W., Plessen, B., Mischke, S., 2023. Hydrological variations in the Yellow River Source area (NE Tibetan Plateau) during the last 7.4 ka inferred from stable isotopes of ostracod valves. Catena, 232: 107328.

6.    Herzschuh, U., B?hmer, T., Chevalier, M., Hébert, R., Dallmeyer, A., Li, C., Cao, X., Peyron, O., Nazarova, L., Novenko, E.Y., Park, J., Rudaya, N.A., Schlütz, F., Shumilovskikh, L.S., Tarasov, P.E., Wang, Y., Wen, R., Xu, Q., Zheng, Z., 2023. Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends. Climate of the Past, 19(7): 1481–1506. DOI: 10.5194/cp-19-1481-2023.

7.    Herzschuh, U., B?hmer, T., Li, C., Chevalier, M., Hébert, R., Dallmeyer, A., Cao, X., Bigelow, N.H., Nazarova, L., Novenko, E.Y., Park, J., Peyron, O., Rudaya, N.A., Schlütz, F., Shumilovskikh, L.S., Tarasov, P.E., Wang, Y., Wen, R., Xu, Q., Zheng, Z., 2023. LegacyClimate 1.0: a dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites covering the last 30 kyr and beyond. Earth System Science Data, 15: 2235–2258. DOI: 10.5194/essd-15-2235-2023.

8.    Chevalier, M., Dallmeyer, A., Weitzel, N., Li, C., Baudouin, J.-P., Herzschuh, U., Cao, X., Hense, A., 2023. Refining data–data and data–model vegetation comparisons using the Earth mover’s distance (EMD). Climate of the Past, 19: 1043–1060. DOI: 10.5194/cp-19-1043-2023.

9.    Bhatta, K.P., Mottl, O., Felde, V.A., Flantua, S.G.A., Birks, H.H., Cao, X., Chen, F., Grytnes, J.-A., Seddon, A.W.R., Birks, H.J.B. 2023. Exploring spatio-temporal patterns of palynological changes in Asia during the Holocene. Frontiers in Ecology and Evology, 11: 1115784. doi: 10.3389/fevo.2023.1115784.

10.  Karachurina, S., Rudaya, N., Frolova, L., Kuzmina, O., Cao, X., Chepinoga, V., Stoof-Leichsenring, K., Biskaborn, B., Herzschuh, U., Nigmatullin, N., Vnukovskaya, Y., Grekov, I., Pestryakova, L., 2023. Terrestrial vegetation and lake aquatic community diversity under climate change during the mid–late Holocene in the Altai Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 623: 111623.

11.  Li, F., Gaillard, M.-J., Cao, X., Herzschuh, U., Sugita, S., Ni, J., Zhao, Y., An, C., Huang, X., Li, Y., Liu, H., Sun, A., Yao, Y., 2023. Gridded pollen-based Holocene regional plant cover in temperate and northern subtropical China suitable for climate modeling. Earth System Science Data, 15: 95–112.

12.  Krivonogov, S.K., Zhdanova, A.N., Solotchin, P.A., Kazansky, A.Y., Chegis, V.V., Liu, Z., Song, M., Zhilich, S.V., Rudaya, N.A., Cao, X., Palagushkina, O.V., Nazarova, L.B., Syrykh, L.S., 2023. The Holocene environmental changes revealed from the sediments of the Yarkov sub-basin of Lake Chany, south-western Siberia. Geoscience Frontiers, 14: 101518.

13.  Gou, H., Wei, H.*, Duan, R., Chen, T., Fan, Q., Du, Y., Cao, X., 2022. Spatial distribution of modern pollen and fungal spores in Qinghai Lake and their ecological indication. Ecological Indicators, 144: 109474.

14. Dallmeyer, A., Kleinen, T., Claussen, M., Weitzel, N., Cao, X., Herzschuh, U., 2022. The deglacial forest conundrum. Nature Communications, 13: 6035.

15.   Herzschuh, U., Bhmer, T., Li, C., Cao, X., Hébert, R., Dallmeyer, A., Telford, R.J., Kruse, S., 2022. Reversals in temperature-precipitation correlations in the Northern Hemisphere extratropics during the Holocene. Geophysical Research Letters, DOI: 10.1029/2022GL099730.

16.  Jia, W., Anslan, S., Chen, F., Cao, X., Dong, H., Dulias, K., Gu, Z., Heinecke, L., Jiang, H., Kruse, S., Kang, W., Li, K., Liu, S., Liu, X., Liu, Y., Ni, J., Schwalb, A., Stoof-Leichsenring, K.R., Shen, W., Tian, F., Wang, J., Wang, Y., Wang, Y., Xu, H., Yang, X., Zhang, D., Herzschuh, U., 2022. Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: Overview and prospects. Quaternary Science Reviews, 293: 107703. 10.1016/j.quascirev.2022.107703.

17.  Li, Z., Wang, Y., Herzschuh, U., Cao, X., Ni, J., Zhao, Y., 2022. Pollen-based biome reconstruction on the Qinghai-Tibetan Plateau during the past 15,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 111190. DOI: 10.1016/j.palaeo.2022.111190.

18. Herzschuh, U., Li, C., B?hmer, T., Postl, A.K., Heim, B., Andreev, A.A., Cao, X., Wieczorek, M., Ni, J., 2022. LegacyPollen 1.0: A taxonomically harmonized global late Quaternary pollen dataset of 2831 records with standardized chronologies. Earth System Science Data, 14(7): 3213–3227.

19.  Tian, F.*, Qin, W., Zhang, R., Herzschuh, U., Ni, J., Zhang, C., Mischke, S., Cao, X., 2022. Palynological evidence for the temporal stability of the plant community in the Yellow River Source Area over the last 7400 years. Vegetation History and Archaeobotany. DOI: 10.1007/s00334-022-00870-5.

20.  Li, C., Postl, A.K., Bhmer, T., Cao, X., Dolman, A.M., Herzschuh, U.*, 2022. Harmonized chronologies of a global late Quaternary pollen dataset (LegacyAge 1.0). Earth System Science Data, 14: 1331–1343.

21.  Qin, F., Zhao, Y., Cao, X., 2022. Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method. Science China Earth Sciences, 65: 518–535. DOI: 10.1007/s11430-021-9867-1.

22.  Tian, F., Wang, W., Rudaya, N., Liu, X., Cao, X., 2022. Wet mid-late Holocene in central Asia supported prehistoric intercontinental cultural communication: clues from pollen data. Catena, 209: 105852.

23.   Rudaya, N., Nazarova, L., Frolova, L., Palagushkina, O., Soenov, V., Cao, X., Syrykh, L., Grekov, I., Otgonbayar, D., Bayarkhuu, B., 2021. The link between climate change and biodiversity of lacustrine inhabitants and terrestrial plant communities of the Uvs Nuur Basin (Mongolia) during the last three millennia. The Holocene, 31: 1443–1458.

24.  Rudaya, N., Frolova, L., Kuzmina, O., Cao, X., Karachurina, S., Nigmatullin, N., Vnukovskaya, Y., 2022. Terrestrial vegetation and lake aquatic communities diversity under climate change during the mid-late Holocene in the Altai Mountains (Ulagan plateau) based on the pollen and cladocera data. Limnology and Freshwater Biology, 2022(4): 1550?1552. DOI: 10.31951/2658-3518-2022-A-4-1550.

25. Zhilich, S., Krivonogov, S., Nazarova, L., Palagushkina, O., Cao, X., Rudaya, N., 2022. Sediments of Lake Malye Chany as a Late Holocene paleoecological archive in the south of West Siberia (Russia). Limnology and Freshwater Biology, 2022 (4): 1628?1629. DOI: 10.31951/2658-3518-2022-A-4-1628.

26.  Liu, S., Li, K., Jia, W., Stoof-Leichsenring, K.R., Liu, X., Cao, X., Herzschuh, U., 2021. Vegetation reconstruction from Siberia and the Tibetan Plateau using modern analogue technique -comparing sedimentary ancient DNA (sedaDNA) and pollen data. Frontiers Ecology And Evolution, 9: 668611.

27. Li, Z., Wang, Y., Herzschuh, U., Cao, X., Ni, J., Zhao, Y., 2021. Pollen-based mapping of Holocene vegetation on the Qinghai-Tibetan Plateau in response to climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110412.

28. Zhao, Y., Miao, Y., Lei, Y., Cao, X., Xiang, M., 2021. Progress, problems and prospects of palynology in reconstructing environmental change in the inland arid areas of Asia. Sciences in Cold and Arid Regions, 13: 271?291.

29.   Lv, F., Chen, J., Zhou, A., Cao, X., Zhang, X., Wang, Z., Wu, D., Chen, X., Yan, J., Wang, H., Dong, G., Xu, Q., Huang, X., Chen, F., 2021. Vegetation history and precipitation changes in the NE Qinghai-Tibet Plateau: a 7,900-yr pollen record from Caodalian Lake. Paleoceanography and Paleoclimatology, 36, e2020PA004126.

30.  Zhao, Y., Liang, C., Cui, Q., Zheng, Z., Xiao, X., Ma, C., Felde, V., Liu, Y., Qin, F., Li, Q., Zhang, Z., Herzschuh, U., Xu, Q., Wei, H., Cai, M., Cao, X., Guo, Z., Birks, J., 2021. Temperature reconstructions for the last 1.74-Ma on the eastern Tibetan Plateau by using an improved pollen-based quantitative method. Global and Planetary Change, 199: 103433.

31.  Stoof-Leichsenring, K. R., Liu, S., Jia, W., Li, K., Pestryakova, L.A., Mischke, S., Cao, X., Liu, X., Ni, J., Neuhaus, S., Herzschuh, U., 2020. Plant diversity in sedimentary DNA obtained from high-latitude (Siberia) and high-elevation lakes (China). Biodiversity Data Journal, 8: e57089.

32. Zhang, K., Qin, W., Tian, F., Cao, X., Li, Y., Xiao, J., Ding, W., Herzschuh, U., Xu, Q., 2020. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China. Frontiers of Earth Science, 14: 789–802.

33.  Li, W.J., Yu, S.Y., Pan, J., Cao, X., Chen, Y., Wang, Y., 2020. A 2000-year documentary record of levee breaches on the lower Yellow River and their relationship with climate changes and human activities. The Holocene, 31: 333–345.

34.  Yi, S., Jun, C.-P., Jo, K.-N., Lee, H., Kim, M.-S., Lee, S.D., Cao, X., Lim, J., 2020. Asynchronous multi-decadal time-scale series of biotic and abiotic responses to precipitation during the last 1300 years. Scientific Reports, 10: 17814.

35. Rudaya, N., Krivonogov, S., S?owiński, M., Cao, X., Zhilich, S., 2020. Postglacial history of the Steppe Altai: Climate, fire and plant diversity. Quaternary Science Reviews, 249: 106616.

36.  Tian, F., Cao, X., Zhang, R., Xu, Q., Ding, W., Liu, X., Pan, B., Chen, J., 2020. Spatial homogenization of soil-surface pollen assemblages improves the reliability of pollen-climate calibration-set. Science China Earth Sciences, 63: 1758–1766.

37.  Chen, F., Zhang, J., Liu, J., Cao, X., Hou, J., Zhu, L., Xu, X., Liu, X., Wang, M., Wu, D., Huang, L., Zeng, T., Zhang, S., Huang, W., Zhang, X., Yang, K., 2020. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quaternary Science Reviews, 243: 106444.

38.  Wang, Y., Shen, J., Wang, Y., Liu, X., Cao, X., Herzschuh, U., 2020. Abrupt mid-Holocene decline in the Indian Summer Monsoon caused by tropical Indian Ocean cooling. Climate Dynamics, 55: 1961–1977.

39. Zhang, R., Tian, F., Xu, Q., Zhou, X., Liu, X., Cao, X., 2020. Representation of modern pollen assemblage to vertical variations of vegetation and climate in the Yadong area, eastern Himalaya. Quaternary International, 536: 45–51.

40.  Li, F., Gaillard, N.-J., Cao, X., Herzschuh, U., Sugita, S., Tarasov, P.E., Wagner, M., Xu, Q., Ni, J., Wang, W., Zhao, Y., An, C., Beusen, A.H.W., Chen, G., Feng, Z., Goldewijk, C.G.M.K, Huang, X., Li, Y., Liu, H., Sun, A., Yao, Y., Zheng, Z., Jia, X., 2020, Towards quantification of Holocene anthropogenic land-cover change in temperate China: A review in the light of pollen-based REVEALS reconstructions of regional plant cover. Earth-Science Reviews, 203: 103119.

41.  Li, G., Zhong, W., Zhao, W., Jin, M., Wang, X., Tao, S., Chen, C., Cao, X., Zhang, Y., Yang, H., Madsen, D.B., 2020. Quantitative precipitation reconstructions from Chagan Nur revealed lag response of East Asian summer monsoon precipitation to summer insolation during the Holocene in arid northern China. Quaternary Science Reviews, 239: 106365.

42.  Lü, F., Zhang, H., Hou, J., Cao, X., Liu, C., 2020. Hydrological Variations and Decline of the Ancient Silk Road Between Han and Sui Dynasties in the Middle Reach of the Tarim River. Acta Geologica Sinica, 94: 646–657.

43.  Li, H., Liu, X., Herzschuh, U., Cao, X., Yu, Z., Wang, Y., 2019. Vegetation and climate changes since the middle MIS 3 inferred from a Wulagai Lake pollen record, Inner Mongolia, Northeastern China. Review of Palaeobotany and Palynology, 262: 44–51.

44.  Sun, J., Ma, C., Cao, X., Zhao, Y., Deng, Y., Zhao, L., Zhu, C., 2019. Quantitative precipitation reconstruction in the east-central monsoonal China since the late glacial period. Quaternary International, 521:175–184.

45.  Huang, X., Peng, W., Rudaya, N., Grimm, E.C., Chen, X., Cao, X., Zhang, J., Pan, X., Liu, S., Chen, C., Chen, F., 2018. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas. Geophysical Research Letters, 45: 6628–6636.

46.   Tian, F., Cao, X., Dallmeyer, A., Lohmann, G., Zhang, X., Ni, J., Andreev, A., Anderson, P.M., Lozhkin, A.V., Bezrukova, E., Rudaya, N., Xu, Q., Herzschuh, U., 2018. Biome changes and their inferred climatic drivers in northern and eastern continental Asia at selected times since 40 cal ka BP. Vegetation History and Archaeobotany, 27: 365–379.

47.  Dallmeyer, A., Claussen, C., Ni, J., Cao, X., Wang, Y., Fischer, N., Pfeiffer, M., Jin, L., Khon, V., Wagner, S., Haberkorn, K., Herzschuh, U., 2017. Biome changes in Asia since the mid-Holocene – an analysis of different transient Earth system model simulations. Climate of the Past, 13: 107–134.

48.  Zhao, Y., Liu, Y.L., Guo Z.T., Fang, K.Y., Li, Q., Cao, X.Y., 2017. Abrupt vegetation shifts caused by gradual climate changes in central Asia during the Holocene. Science China Earth Sciences, 60: 1317–1327.

49.  Xu, Q., Zhang, S., Gaillard, M.-J., Li, M., Cao, X., Tian, F., Li, F., 2016. Studies of modern pollen assemblages for pollen dispersal- deposition- preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: A review based on case studies in China. Quaternary Science Reviews, 149: 151–166.

50.  Zhang, S., Xu, Q., Gaillard, M.-J., Cao, X., Li, J., Zhang, L., Li, Y., Tian, F., Zhou, L., Lin, F., Yang, X., 2016. Characteristic pollen source area and vertical pollen dispersal and deposition in a mixed coniferous and deciduous broad-leaved woodland in the Changbai mountains, northeast China. Vegetation History and Archaeobotany, 25: 29–43.

51.  Xu, Q., Chen, F., Zhang, S., Cao, X., Li, J., Li, Y., Li, M., Chen, J., Liu, J., Wang, Z., 2017. Vegetation succession and East Asian Summer Monsoon Changes since the last deglaciation inferred from high-resolution pollen record in Gonghai Lake, Shanxi Province, China. The Holocene, 27: 835–846.

52.   ang, S., Cao, X., Jin, H., 2015. Validation of ice-wedge isotopes at Yituli'he, northeastern China as climate proxy. Boreas, 44: 502–510.

53.   Chen, F., Xu,Q., Chen, J., Birks, H.J.B., Liu, J., Zhang, S., Jin, L., An, C., Telford, R.J., Cao, X., Wang, Z., Zhang, X., Selvaraj, K., Lu, H., Li, Y., Zheng, Z., Wang, H., Zhou, A., Dong, G., Zhang, J., Huang, X., Bloemendal, J., Rao, Z., 2015. East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports, 5: 11186.

54.   Dallmeyer, A., Herzschuh, U., Claussen, M., Ni, J., Wang, Y., Mischke, S., Cao, X., 2015. Vegetation, Climate, Man—Holocene Variability in Monsoonal Central Asia. Chapter: Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC). Part of the series: Springer Briefs in Earth System Sciences. pp 97–102.

55.  Ni, J., Cao, X., Jeltsch, F., Herzschuh, U., 2014. Biome distribution over the last 22,000 yr in China. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 33–47.

56.  Xu, Q., Cao, X., Tian, F., Zhang, S., Li, Y., Li, M., Li, J., Liu, Y., Liang, J., 2014. Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction. Science China: Earth Sciences, 57: 1254–1266.

57.  Chen, F., Liu, J., Xu, Q., Li, Y., Chen, J., Wei, H., Liu, Q., Wang, Z., Cao, X., Zhang, S., 2013. Environmental magnetic studies of sediment cores from Gonghai Lake: implications for monsoon evolution in North China during the late glacial and Holocene. Journal of Paleolimnology, 49: 447–464.

58.   Xu, Q., Tian, F., Bunting, M.J., Ding, W., Cao, X., He, Z., 2012. Pollen source areas of lakes with inflowing rivers: modern pollen influx data from Lake Baiyangdian, China. Quaternary Science Reviews, 37: 81–91.

59.   Ding, W., Pang, R., Xu, Q., Li, Y., Cao, X., 2011. Surface pollen assemblages as indicators of human impact in the warm temperate hilly areas of eastern China. Chinese Science Bulletin, 56: 996–1004.

60.  Wang, X., Li, Y., Xu, Q., Cao, X., Zhang L., Tian, F., 2010. Pollen assemblages from different agricultural units and their spatial distribution in Anyang area. Chinese Science Bulletin, 55: 544–554.

61.  Tian, F., Cao, X., Xu, Q., Li, Y., 2009. A laboratorial study on the influence of alkaline and oxidative environment on the preservation of Pinus tabulaeformis pollen. Frontiers of Earth Science, 3: 226–230.

62.  Xu, Q., Li, Y., Tian, F., Cao, X., Yang, X., 2009. Pollen assemblages of tauber traps and surface soil samples in steppe areas of China and their relationships with vegetation and climate. Review of Palaeobotany and Palynology, 153: 86–101.

63.   Li, Y., Xu, Q., Zhang, L., Wang, X., Cao, X., Yang, X., 2009. Modern pollen assemblages of the forest communities and their relationships with vegetation and climate in northern China. Journal of Geographical Sciences, 19: 643–659.

64.  Tian, F., Xu, Q., Li, Y., Cao, X., Wang, X., Zhang, L., 2008. Pollen Assemblage Characteristics of Lakes in the Monsoon Fringe area of China. Chinese Science Bulletin, 53: 3354–3363.