人才详细信息

姓名:陈学龙
性别:
学历:博士
专家类别:研究员
电话:
传真:010-8409 7079
电子邮箱:x.chen@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

2020年03月-今,中国科学院青藏高原研究所,研究员
2018年02月-2020年03月,中国科学院青藏高原研究所,项目研究员
2013年11月-2017年12月,荷兰特文特大学,Researcher
2009年12月-2013年11月,荷兰特文特大学,博士
2006年07月-2011年07月,中国科学院青藏高原研究所,博士
2003年07月-2006年07月,兰州大学,大气科学学院,实验员
1999年07月-2003年07月,兰州大学,大气科学,学士

研究方向

陆气耦合及其参数化

职务

社会任职

受邀国际杂志Remote Sensing of Environment (4), Hydrology and Earth System Sciences (HESS) (8), Journal of Geophysical Research–Atmospheres (3), Journal of Hydrometeorology (2), Journal of Hydrology (1), Journal of Applied Meteorology and Climatology (3), Earth-Science Review (ESR)(1), Theoretical and Applied Climatology (TAAC) (4), PLOS ONE (2), Journal of Earth System Science (JESS) (1), International Journal of Applied Earth Observation and Geoinformation (IJAEOG) (1), Journal of the Meteorological Society of Japan (2), Atmospheric and Oceanic Science Letters (1), Atmospheric Science Letters (1), Remote sensing (3), Environmental Earth Sciences (1), Acta Geophysica (1)等审稿共计40篇。担任英国气象学会《Meteorological Applications》副主编、《The Open Atmospheric Science Journal》期刊编辑。

承担项目

承担项目: 

1.利用改进的能量平衡模型计算青藏高原时空连续的每日蒸发量, 62万,项目主持人; 

2.雅鲁藏布大峡谷水汽通道科考分队,150万,执行队长;  

3.泛第三极地区多圈层地气相互作用过程及其影响区域能量和水分循环的机制研究,330万,课题负责人; 

4.CAS-KNAW Phd Training Programme, 5万欧元, 项目执行人;   

指导研究生论文:  

数值模拟方向  

1. 博士生赖悦,高原山谷地区地气交换的观测与模拟,2016级在读; 

2. 博士生李璐含,雅鲁藏布大峡谷极端降水模拟,2018级在读(联合培养);   

3. 硕士生刘亚静,复杂山地对流降水参数化,2019级在读;

卫星遥感方向     

4. 硕士生 Anik Dash, 遥感估算青藏高原的日蒸散发,2019级在读;  

已毕业研究生:  

5. 博士生 Eyale Bayable, 艾瑟尔比亚山地地气相互作用的卫星遥感,2020年答辩

6. 硕士 Yonas Welday Tekle, Scaling up Sardon catchment groundwater recharge into Dehesa (Montado) Hard Rocks of Iberian Peninsula, 2016年答辩;   

7. 硕士Jing Zhao, Estimate hourly and daily evapotranspiration using remote sensing technology for Haihe River Basin, 2016年答辩;  

获奖及荣誉

代表论著

代表论著:   

1. Chen, X.*, Su, Z., Ma Y., Elizabeth M, 2019, Optimization of a remote sensing energy balance method over different canopy applied at global scale,Agricultural and Forest Meteorology, 279: 107633.

2. Chen, X. *, William, J. , Su Z., 2019, A Column Canopy‐Air Turbulent Diffusion Method for Different Canopy Structures, Journal of Geophysical Research: Atmospheres, 2019.01.15, 124.

3. Chen, X.*, Su Z., Ma Y., Cleverly J., Liddell M., 2017: An accurate estimate of monthly mean land surface temperatures from MODIS clear-sky retrievals, J. Hydrometeor., 18, 2827–2847.

4. Chen X.*, Bojan S., Rotach M., A el JA, Su Z., Ma, Y. Li M., 2016: Reasons for the Extremely High-Ranging Planetary Boundary Layer over the Western Tibetan Plateau in Winter, Journal of Atmospheric Science, 73, 2021–2038.

5. Chen, X.*, Su, Z., Ma, Y., Liu, S., Yu, Q., and Xu, Z., 2014: Development of a 10 year (2001–2010) 0.1° dataset of land-surface energy balance for mainland China, Atmos. Chem. Phys., 14, 13097–13117.

6. Chen X, A el JA, Su Z, de la Torre L, Kelder H, et al., 2013: The Deep Atmospheric Boundary Layer and Its Significance to the Stratosphere and Troposphere Exchange over the Tibetan Plateau, PLoS ONE 8(2).

7. Chen, X*., Su, Z., Ma, Y., Yang, K., and Wang, B., 2013: Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau, Hydrology and Earth System Sciences, 17, 1607-1618.

8. Chen X.*, Su, Z., Ma, Y. , et. al., 2012: An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau, Journal of Applied Meteorology and Climatology,52(3): 623-633.

9. Chen X.*, Su, Z., Ma, Y. M., Sun, F.L., 2012, Analysis of land-atmosphere interactions over the north region of Mt. Qomolangma (Mt. Everest), Arctic Antarctic and Alpine Research 44(4): 412-422.

10. Chen X.*, Ma Y., H. Kelder, Su Z., and Yang K., 2011: On the behavior of the tropopause folding events over the Tibetan Plateau, Atmos. Chem. Phys., 11, 5113–5122. 

合著文章:  

11. Huang Y., Guo H., Chen X., Chen Z., van der Tol C., Zhou Y., Tang J., Meteorological controls on evapotranspiration over a coastal salt marsh ecosystem under tidal influence, Agricultural and Forest Meteorology, 279, 107755.

12. Ge, J., W. Guo, A. J. Pitman, M. G. D. Kauwe, Chen X., and Fu C., 2019: The non-radiative effect dominates local surface temperature change caused by afforestation in China, J. Climate, 32, 4445–4471.

13. Wang, Q., Veldea R., Ferrazzolib P, Chen X., Bai X., Su Z., 2019, Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations, International Journal of Applied Earth Observation and Geoinformation, 77: 108-118. 

14. Xu M., Kang S.*, Chen X.*, Wu H., Wang X, Su Z., 2018: Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau, Science of The Total Environment, 639: 1220-1232.

15. Han, C., Ma, Y., Chen, X. and Su, Z., 2017, Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012, Int. J. Climatol, 37: 4757-476.

16. Peng, J., A. Loew, Chen X., Y. Ma, and Z. Su, 2016: Comparison of satellite based evapotranspiration estimates over the Tibetan Plateau, Hydrology and Earth System Sciences, 20, 3167-3182.

17. Wang B., Ma Y., Chen X., et al., 2015: Observation and simulation of lake‐air heat and water transfer processes in a high‐altitude shallow lake on the Tibetan Plateau, J. Geophys. Res. Atmos., 120, 12327– 12344.

18. Han, C., Ma Y., Chen X, Su Z., 2015: Estimates of land surface heat fluxes of the Mt. Everest region over the Tibetan Plateau utilizing ASTER data, Atmospheric Research,168,180-190.

19. Tian, X., van der Tol, C., Su, Z., Li, Z., Chen, E., Li, X., Yan, M., Chen, X., et al., 2015: Simulation of forest evapotranspiration using time - series parameterization of the surface energy balance system (SEBS) over the Qilian Mountains, Remote Sensing, 7 (2015)12 pp. 15822-15843. 

20. Han C., Ma Y., Su Z., Chen X., et. al., 2014: Estimates of effective aerodynamic roughness length over mountainous areas of the Tibetan Plateau, Quarterly Journal of the Royal Meteorological Society, 141, 689,1457-1465.

21. Li M., Babel W., Chen X., Zhang L., Sun F., et al., 2014: A 3-yr data set of sensible and latent heat fluxes on the Tibetan Plateau derived by eddy-covariance measurements, Theoretical and Applied Climatology, 1-13. 

22. Su, Z., Fernández, D., Timmermans, J., Chen, X., et.al., 2014: First results of the earth observation Water Cycle Multi-mission Observation Strategy (WACMOS), International Journal of Applied Earth Observation and Geoinformation, 26:270-285.

23. Timmermans, W., Christiaan V. der T., Timmermans, J., Ucer M., Chen X. et al. , 2014: An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign, Acta Geophys, 63, 1465–1484 (2015).

24. Biermann, T, Babel, W, Ma, W, Chen, X, et al., 2013: Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau, Theoretical and Applied Climatology, 1-16.

25. Ma, Y., L. Zhong, B. Wang, W. Ma, Chen X., and M. Li, 2011: Determination of land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau by using the MODIS and in-situ data, Atmos. Chem. Phys., 11, 10461–10469.

26. Ma Y., Wang Y., Wu R., Hu Z., Yang K., Li M., W. Ma, L. Zhong, F. Sun, Chen X., Z. Zhu, S. Wang, and H. Ishikawa, 2009: Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau, Hydrology and Earth System Sciences, 13, 1103-1111.

27. González M. P., Chen X., et al., 2017: Evolution of evapotranspiration and water stress of oak savanna vegetation in the Iberian Peninsula (2001-2015), Spanish Journal of Remote Sensing, 2017(50): 10.

28. LI, M, Su Z., Ma Y.; Chen X.; Zhang L.; Hu Z., 2016: Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau, Sciences in Cold and Arid Regions, 02: 103~115.