人才详细信息

姓名:郑东海
性别:
学历:博士
专家类别:研究员
电话:010-84097043
传真:010-8409 7079
电子邮箱:zhengd@itpcas.ac.cn
职称:研究员
通讯地址:北京市朝阳区林萃路16号院3号楼

简介

教育背景:   
2010.10 -2015.11 荷兰University of Twente 水文气象专业 博士
2007.09 -2010.07 北京师范大学 地理信息系统与遥感专业   硕士
2003.09 -2007.07 福建师范大学 地理科学国家理科基地专业 学士
研究经历:
2020.11 -至今    中国科学院青藏高原研究所 研究员
2018.04 -2020.10    中国科学院青藏高原研究所 副研究员
2015.04 -2018.03 荷兰ITC, University of Twente Researcher 

研究方向

陆面水文、微波遥感

职务

社会任职

2020 -至今 《遥感学报》青年编委 

2018–至今 《遥感技术与应用》青年编委 

2020          Remote Sensing》专刊特邀编委 

承担项目

基金委面上项目“青藏高原土壤未冻水的微波遥感监测和数据同化方法研究”,批准号41871273,执行期间:2019.1-2022.12,主持 

中科院A类先导项目子任务“冻土退化导致的陆面过程协同变化”,批准号XDA2010010302,执行期间:2018.3-2022.12,主持 

中科院率先行动“引才计划”青年俊才(C类)项目,执行期间:2018.4-2020.3,主持 

获奖及荣誉

 

代表论著

1. Zheng, D., Li, X., Zhao, T., Wen, J., van der Velde, R., Schwank, M., Wang, X., Wang, Z., & Su, Z. (2020). Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil, IEEE Transactions on Geoscience and Remote Sensing, 10.1109/TGRS.2020.3024971.

2. Wu, X., Zheng, D.* (2020). Surface Roughness Effect on L-Band Multiangular Brightness Temperature Modeling and Soil Liquid Water Retrieval of Frozen Soil, IEEE Geoscience and Remote Sensing Letters, 10.1109/LGRS.2020.3004712.

3. Lu, H., Zheng, D., Yang, K., and Yang, F. (2020). Last Decade Progress in Understanding and Modeling the Land Surface Processes on the Tibetan Plateau, Hydrol. Earth Syst. Sci., 24, 5745–5758.

4. Cao, B., Gruber, S., Zheng, D.*, and Li, X.* (2020). The ERA5-Land Soil-Temperature Bias in Permafrost Regions, The Cryosphere, 14, 2581-2595.

5. Zheng, D., Li, X., Wang, X., Wang, Z., Wen, J., van der Velde, R., Schwank, M., & Su, Z. (2019). Sampling depth of L-band radiometer measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau, Remote Sensing of Environment, 226, 16-25.

6. Zheng, D., Wang, X., van der Velde, R., Schwank, M., Ferrazzoli, P., Wen, J., Wang, Z., Colliander, A., Bindlish, R., & Su, Z. (2019). Assessment of Soil Moisture SMAP Retrievals and ELBARA-III Measurements in a Tibetan Meadow Ecosystem, IEEE Geoscience and Remote Sensing Letters, 1-5.

7. Zheng, D., R. van der Velde, Z. Su, J. Wen, X. Wang, and K. Yang (2018). Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers, Journal of Hydrology, 563, 382-394.

8. Zheng, D., R. van der Velde, J. Wen, X. Wang, P. Ferrazzoli, M. Schwank, A. Colliander, R. Bindlish, and Z. Su (2018). Assessment of the SMAP Soil Emission Model and Soil Moisture Retrieval Algorithms for a Tibetan Desert Ecosystem, IEEE Transactions on Geoscience and Remote Sensing, 56, 3786-3799.

9. Zheng, D., X. Wang, R. van der Velde, P. Ferrazzoli, J. Wen, Z. Wang, M. Schwank, A. Colliander, R. Bindlish, and Z. Su (2018). Impact of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the third pole environment, Remote Sensing of Environment, 209, 633-647.

10. Zheng, D., X. Wang, R. van der Velde, Y. Zeng, J. Wen, Z. Wang, M. Schwank, P. Ferrazzoli, and Z. Su (2017). L-Band Microwave Emission of Soil Freeze-Thaw Process in the Third Pole Environment, IEEE Transactions on Geoscience and Remote Sensing, 55(9), 5324-5338.

11. Zheng, D., R. van der Velde, Z. Su, J. Wen, X. Wang, and K. Yang (2017). Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem, Journal of Hydrometeorology, 18(6), 1749-1763.

12. Zheng, D., R. van der Velde, Z. Su, J. Wen, and X. Wang (2017). Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river, Journal of Geophysical Research: Atmosphere, 122, 1488-1504.

13. Zheng, D., R. van der Velde, Z. Su, J. Wen, X. Wang, M. J. Booij, A. Y. Hoekstra, S. Lv, Y. Zhang, and M. B. Ek (2016). Impacts of Noah model physics on catchment-scale runoff simulations, Journal of Geophysical Research: Atmosphere, 121, 807-832.

14. Zheng, D., R. van der Velde, Z. Su, X. Wang, J. Wen, M. J. Booij, A. Y. Hoekstra, and Y. Chen (2015). Augmentations to the Noah model physics for application to the Yellow River source area. Part I: Soil water flow, Journal of Hydrometeorology, 16(6), 2659-2676.

15. Zheng, D., R. van der Velde, Z. Su, X. Wang, J. Wen, M. J. Booij, A. Y. Hoekstra, and Y. Chen (2015). Augmentations to the Noah model physics for application to the Yellow River source area. Part II: Turbulent heat fluxes and soil heat transport, Journal of Hydrometeorology, 16(6), 2677-2694.

16. Zheng, D., R. van der Velde, Z. Su, J. Wen, M. J. Booij, A. Y. Hoekstra, and X. Wang (2015). Under-canopy turbulence and root water uptake of a Tibetan meadow ecosystem modeled by Noah-MP, Water Resources Research, 51, 5735-5755.

17. Zheng, D., R. van der Velde, Z. Su, M. J. Booij, A. Y. Hoekstra, and J. Wen (2014). Assessment of roughness length schemes implemented within the Noah land surface model for high-altitude regions, Journal of Hydrometeorology, 15(3), 921-937.