科研成果
  当前位置:首页 > 科研成果 > 论文
Terrestrial nitrogen cycle simulation with a dynamic global vegetation model
作者: Xu, R. and I.C. Prentice
期刊名称: Global Change Biology
发表年度: 2008
卷: 14
期: 8
联系作者:
页码: 1745-1764
摘要: A global scale Dynamic Nitrogen scheme (DyN) has been developed and incorporated into the Lund-Posdam-Jena (LPJ) dynamic global vegetation model (DGVM). The DyN is a comprehensive process-based model of the cycling of N through and within terrestrial ecosystems, with fully interactive coupling to vegetation and C dynamics. The model represents the uptake, allocation and turnover of N in plants, and soil N transformations including mineralization, N-2 fixation, nitrification and denitrification, NH3 volatilization, N leaching, and N-2, N2O and NO production and emission. Modelled global patterns of site-scale nitrogen fluxes and reservoirs are highly correlated to observations reported from different biomes. The simulation of site-scale net primary production and soil carbon content was improved relative to the original LPJ, which lacked an interactive N cycle, especially in the temporal and boreal regions. Annual N uptake by global natural vegetation was simulated as 1.084 Pg N yr(-1), with lowest values < 1 g N m(-2) yr(-1) (polar desert) and highest values in the range 24-36.5 g N m(-2) yr(-1) (tropical forests). Simulated global patterns of annual N uptake are consistent with previous model results by Melillo et al. The model estimates global total nitrogen storage potentials in vegetation (5.3 Pg N), litter (4.6 Pg N) and soil (>= 67 Pg as organic N and 0.94 Pg as inorganic N). Simulated global patterns of soil N storage are consistent with the analysis by Post et al. although total simulated N storage is less. Deserts were simulated to store 460 Tg N (up to 0.262 kg N m(-2)) as NO3-, contributing 80% of the global total NO3- inventory of 580 Tg N. This model result is in agreement with the findings of a large NO3- pool beneath deserts. Globally, inorganic soil N is a small reservoir, comprising only 1.6% of the global soil N content to 1.5 m soil depth, but the ratio has a very high spatial variability and in hot desert regions, inorganic NO3- is estimated to be the dominant form of stored N in the soil.

版权所有:中国科学院青藏高原研究所 Copyright © 2003-
通讯地址:北京市朝阳区林萃路16号院3号楼 邮政编码:100101
京ICP备05002818-1号 京公网安备110402500031号